
SCOREX BLOG

! SEPTEMBER 07, 2016 " ALEXANDER CHEPURNOY # 8 MIN READ 0 COMMENTS

When you starting a Bitcoin node it is downloading all the transactions for more than 7 years in order to check
them all. People are often asking in the community resources whether it is possible to avoid that. In a more
interesting formulation the question would be “can we get fullnode security without going from genesis
block”?

The question becomes even more important if we consider the following scenario. Full blocks with
transactions are needed only in order to update a minimal state, that is, some common state representation
enough to check whether is arbitrary transaction is valid(against the state) or not. In case of Bitcoin, minimal
state is unspent outputs set (we call this stateminimal as a node could also store some additional
information also, e.g. historical transactions for selected addresses, but this information is not needed to
check validity of an arbitrary transaction). Having this state (with some additional data to perform possible
rollbacks) full blocks are not needed anymore and so could be removed.

In Bitcoin fullnodes are storing all the full blocks since genesis without a clear selfish need. This is the
altruistic behavior and we can not expect nodes to follow it in the long term. But if all the nodes are rational
how a new node can download and replay the history?

The proposal recently put on Arxiv trying to solve the problems mentioned with a new Proof-of-Work
consensus protocol. I very lightly list here modifications from Bitcoin, for details please read the paper.

State is to be represented as an authenticated data structure(Merkle tree is the simple example of
such a data structure) and a root value of it is to be included into a blockheader. It is the pretty old idea

1.

IOHK | SCOREX

RROOLLLLEERRCCHHAAIINN,, AA
BBLLOOCCKKCCHHAAIINN WWIITTHH
SSAAFFEELLYY PPRRUUNNEEAABBLLEE
HHIISSTTOORRYY

already implemented in Ethereum(and some other coins).
We then modify a Proof-of-Work function. A miner is choosing uniformly k state snapshot versions out
of last n a (sufficiently large) network stores collectively. In order to generate a block miner needs to
provide proofs of possession for all the state snapshots. On a new block arrival a miner updates k+1
states, not one, so full blocks (since minimal value in k) are also needed.

2.

Thus miners store a distributed database of last n full blocks AND state snapshots getting rewards for that
activity. A new node downloads blockheaders since genesis first (header in Bitcoin is just 80 bytes, in
Rollerchain 144 bytes if a hash function with 32 bytes output is chosen). Then it could download last
snapshot or from n blocks ago, or from somewhere in between. It is proven that this scheme achieves
fullnode-going-from-genesis security with probability of failure going down exponentially with “n” (see
Theorem 2 in the paper). Full blocks not needed for mining could be removed by all the nodes. They can store
them as in Bitcoin but we do not expect it anymore.

The RollerChain fullnode is storing only sliding window of full blocks thus storing disk space, also less
bandwidth is needed in order to feed new nodes in the network and so bandwidth saved could be repurposed
for other tasks.

May 17, 2016 by alex.chepurnoy@iohk.io

Announcing Ergaki - A performant, public bulletin board for voting
and auctions
The first Scorex-based testnet, Lagonaki, combines the Permacoin consensus protocol implementation with a simple,
Nxt-like payments module. After Lagonaki, the next Scorex-based testnet will be Ergaki, a block chain system that will be
used as a public and performant bulletin board for various protocols including voting and auctions.

May 17, 2016 by alex.chepurnoy@iohk.io

Ergaki, the Next Scorex Testnet
A Scorex application is comprised if core, and Scorex itself is the core functions and module interfaces, and modules. The
current testnet, Lagonaki, is made of Permacoin consensus protocol implementation and a simplest Nxt-like payments
module.

