TREATING THE THORACIC SPINE: AN EVIDENCE-BASED APPROACH

Scott Lawrance
Clinical Associate Professor
Purdue University
PROVIDER DISCLAIMER

• In compliance with continuing education requirements, all presenters must disclose any financial associations with the manufacturers of commercial products, supplies of commercial services, or commercial supporters as well as any use of unlabeled product(s) or product(s) under investigational use.

• This presentation does not involve the unlabeled use of a product or product under investigational use.

• There was no commercial support for this activity.
CONFLICT OF INTEREST

• Currently serve as President of GLATA
• The views expressed in these slides and the today’s discussion are mine and do not represent GLATA or Purdue University
• My views may not be the same as the views of my company’s clients or my colleagues
• Participants must use discretion when using the information contained in this presentation
OBJECTIVES

1. Demonstrate the importance of thoracic spine mobility and relate how a lack of motion can affect function throughout the spine and upper kinetic chain.

2. Analyze thoracic spine mobility and classify differences in spinal versus segmental motion loss to determine a therapeutic intervention.

3. Apply static and dynamic thoracic spine joint mobilizations to improve range of motion.

4. Build a therapeutic exercise program to maximize the manual therapy intervention.
DEFINING THE PROBLEM

• Thoracic spine and rib pain is often thought to be self-limiting in nature1,2

• Thoracic spine serves as region of force transmission, transferring load between lower and upper extremities1-4

• Due to the proximity of the thoracic spine to the cervical, lumbar, and shoulder regions, dysfunction in the thoracic spine can influence pain, mobility, and stability across these areas1-3,5-7
DEFINING THE PROBLEM

• Thoracic kythosis and hypomobility is common deficit11,15-18
 - Prolonged sitting posture
 - Front side training dominance/preference
• Thoracic spine immobility can contribute to many different problems
 - Difficulty/painful rotation
 - Lumbar spine or cervical spine pain
 - Shoulder pain/limited mobility

NORMAL MOVEMENT ASSESSMENT

• Accepted normative physiological motion values:8-10
 • Flexion: 20° to 45°
 • Extension: 25° to 45°
 • Sidebending: 20° to 40°
 • Rotation: 35° to 60°

• Passive Intervertebral Movement (PIVM):11-14
 • Segmental assessment technique to determine how each vertebrae moves on another
CLINICAL QUESTION 1

• Is gross spinal motion analysis or segmental spinal motion analysis a more accurate measure to identify mobility deficits in active adults with pain?

<table>
<thead>
<tr>
<th>P</th>
<th>Active adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Gross Spinal Motion OR Spine Goniometry</td>
</tr>
<tr>
<td>C</td>
<td>Segmental Spinal Motion OR PIVM</td>
</tr>
<tr>
<td>O</td>
<td>Loss of motion OR Decreased mobility</td>
</tr>
</tbody>
</table>
CLINICAL QUESTION 1

- Goniometry19-21
 - Poor to fair inter-rater reliability
 - Fair to good intra-rater reliability

- PIVM14,22-24
 - Poor to fair inter-rater reliability
 - Fair to good intra-rater reliability
GROSS MOBILITY ASSESSMENT

• Thoracic spine mobility
 • **Note:** Quality of motion, Amount of motion, Degree of rotation, Mechanical symptoms, Diminishment or exaggeration of spinal curves
SEGMENTAL MOBILITY ASSESSMENT

• PIVMs
 • Passively flex/extend the trunk
 • Feel for restricted inter-spinous process movement
 • Used to judge local movement and classify as hypermobile, normal, or hypomobile
SEGMENTAL MOBILITY ASSESSMENT

• Spring Testing
 • Hypermobile
 • Normal
 • Hypomobility
SEGMENTAL MOBILITY ASSESSMENT

• Positional palpation
 • Flexed, neutral, and extended position
 • Is the segment neutral vs. rotated to the right or the left
RIB MOBILITY ASSESSMENT

• Rib mobility will play a role in thoracic mobility
• Must answer which is the dysfunctional segment?
• Rib motion review:
 • Pump handle
 • Bucket handle
 • Caliper
LAB

• Work with a partner or in a small group to assess thoracic spine mobility
 • Can you identify areas of decreased mobility grossly?
 • Gross ROM
 • Can you identify areas of decreased mobility segmentally?
 • PIVMs
 • Segmental PAs
 • Positional palpation
• Can you identify areas of decreased rib cage mobility?
 • Upper ribs, middle ribs, lower ribs
CLINICAL QUESTION 2

• In patients who lack thoracic spine mobility, are manual therapy mobilizations, alone, as effective as manual therapy mobilizations in combination with soft tissue stretching for improving patient function?

<table>
<thead>
<tr>
<th>P</th>
<th>Active adults</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Joint Mobilization</td>
</tr>
<tr>
<td>C</td>
<td>Joint Mobilization with Stretching</td>
</tr>
<tr>
<td>O</td>
<td>Improved function OR Improved mobility</td>
</tr>
</tbody>
</table>
CLINICAL QUESTION 2

• Several high quality studies support the use of manipulation26-28,31,32,34,35
 • Increased GROC
 • Decreased SANE
 • Improved Neck Disability Index, Oswestry, and DASH scores

• Is manipulation allowed in your practice act?
• What is the role of evidence in our current educational reform and curricular design?
CLINICAL QUESTION 2

• Manual therapy interventions can lead to a decrease in pain and improvement in function in the thoracic spine and adjacent regions25-35

• Combination of manual therapy and exercise improved thoracic spine pain reported36-40

• Optimal interventions for the management of primary thoracic pain have yet to be determined
STATIC MOBILIZATION

• Mostly *low-level* evidence to support the use of mobilization\(^{29,33,36,39}\)
• Manipulation > Mobilization
• PA glides
• PA rotational glides
DYNAMIC MOBILIZATION

- Mulligan Mobilization with Movement\(^{41}\)
MUSCLE ENERGY42,43

- Group dysfunctions (Type I) involve 3 or more segments in a row
 - Dysfunction is usually due to a long muscle crossing the area: quadratus lumborum, latissimus dorsi, erector spinae
- Segment dysfunctions (Type II) involve a single vertebral unit
 - Most commonly seen
MUSCLE ENERGY: GROUP VERSUS SEGMENT DYSFUNCTION

• Group dysfunctions treated with mobility exercises and other manual therapies
• Segmental dysfunctions treated with Muscle Energy
SEGMENTAL ASSESSMENT EXAMPLE #1

Flexed: T5 → T6 → T7 → T8 → T9
Neutral: T5 → T6 → T7 → T8 → T9
Extended: T5 → T6 → T7 → T8 → T9
SEGMENTAL ASSESSMENT EXAMPLE #2

Flexed

T5
T6
T7
T8
T9

Neutral

T5
T6
T7
T8
T9

Extended

T5
T6
T7
T8
T9
SEGMENTAL ASSESSMENT EXAMPLE #3

Flexed

Neutral

Extended
TREATING TYPE II DYSFUNCTIONS

• Patient positioning
 • Place them in a seated position with legs off the end of table
 • Stand to the side of the patient where you are going to sidebend them toward
 • Patient will cross that arm over their chest
TREATING TYPE II DYSFUNCTIONS

• Finding the barrier (1 of 2)
 • The trunk is flexed or extended until motion is felt in the involved segment
 • If the prominent transverse process was found in flexion, the trunk should be extended until the segment moves
 • If the prominent transverse process was found in extension, the trunk should be flexed until the segment moves
TREATING TYPE II DYSFUNCTIONS

• Finding the barrier (2 of 2)
 • Maintain trunk flexion or extension while moving the patient into sidebending until the segment you are monitoring moves
 • Maintaining this position, add passive rotation into you until you once again feel the segment start to move
TREATING TYPE II DYSFUNCTION

• Treatment
 • Patient actively tries to rotate back toward a neutral position while examiner holds position
 • Minimal force is needed
 • Contraction held for 3-5 seconds
 • Examiner “re-establishes” the barrier with further rotation
 • A total of 3 contractions are performed
 • Be sure not to rush the treatment → time must be allowed for musculature to relax
TREATING TYPE II DYSFUNCTION

• Re-assess
 • Segmental motion
 • Gross motion (comparable sign)
• Work with a partner or in a small group to treat thoracic spine mobility
 • Practice segmental static mobilizations
 • PA
 • PA rotational
 • Practice MWM dynamic mobilizations
 • Flexion
 • Extension
 • Rotational
 • Try muscle energy segmental positioning
THERAPEUTIC MOBILITY EXERCISE

• Proliferation of corrective exercises targeting thoracic spine in last 5-10 years
• Case studies have been published on effectiveness of exercise to improve thoracic mobility2,36,39
THERAPEUTIC EXERCISE FOR FLEXION/EXTENSION
THERAPEUTIC EXERCISE FOR ROTATION
CLINICAL BOTTOM LINE

• Assessment of motion is clinician dependent
• Manipulation has demonstrated the best outcomes
• Manual therapy in conjunction with exercise is effective
• No evidence on exercise alone to treat mobility
QUESTIONS?

Scott Lawrance, DHSc, LAT, ATC, MSPT, CSCS
Purdue University
800 W University Drive
West Lafayette, IN 47907
(765) 496-0502
slawranc@purdue.edu
@SELawrance
REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

