
Designing a new virtual machine and universal language
framework

Guest blog from Professor Rosu explains the work being done in a partnership
between Runtime Veri�cation and IOHK

2 OCTOBER 26, 2017 # GRIGORE ROSU G 9 MIN READ

The IELE and K team

Mathematical rigor and good design of programming languages and underlying virtual machines are critical for the success of blockchain
technologies and applications. Indeed, decades of accumulated evidence show that formal techniques and their early adoption in the design of
computing systems can signi�cantly increase the safety, security and dependability of such systems. Moreover, when paired with good user
interfaces that hide the mathematical complexity, such techniques can also increase the effectiveness, elegance and quality of code
development. A good example is the recent success of functional programming languages and of automated theorem provers or constraint
solvers.

Runtime Veri�cation, a University of Illinois start-up founded by computer science Professor Grigore Rosu, has been recently awarded a research
and development contract by IOHK to design a next generation virtual machine and a universal language framework to be used as core
infrastructure for future blockchain technologies. The formal analysis and veri�cation technology employed in this project was initiated by Prof.
Rosu and his collaborators back in 2001, when he was a NASA scientist, and has been improved over more than 15 years of research and
development both in his Formal System Laboratory (FSL) at the University of Illinois at Urbana-Champaign and at Runtime Veri�cation, with

IOHK | IOHK | BLOG

generous funding of more than $10M from organisations including NSF, NASA, DARPA, NSA, Boeing, Microsoft, Toyota, and Denso. It is about
time that aircraft grade, software analysis technology used for mission critical software gets deployed to smart contracts, the blockchain and
cryptocurrencies. The project will be executed by a team of Runtime Veri�cation experts led by Prof Rosu, who will work closely with students at
the University of Illinois – also funded by IOHK – and with the IOHK research and development team.

IELE – A Register-Based Virtual Machine for the Blockchain

Based on learnings from de�ning KEVM, our semantics of EVM in K, we will design and de�ne a new VM, which we call IELE (after the
Mythological Iele). Unlike the EVM, which is a stack-based machine, IELE will be a register-based machine, like LLVM. It will have an unbounded
number of registers and will also support unbounded integers. There are some tricky but manageable aspects with respect to gas calculation, a
critical part of the design.

Here are the forces that will drive the design of IELE:

1. To serve as a uniform, lower-level platform for translating and executing smart contracts from higher-level languages, which can also
interact with each other by means of an ABI (Application Binary Interface). The ABI will be a core element of IELE, and not just a
convention on top of it. Also, unbounded integers and an unbounded number of registers will make compilation from higher-level
languages more straightforward and elegant and, looking at the success of LLVM, more e�cient in the long term. Indeed, many of the
LLVM optimizations are expected to carry over. For that reason, IELE will follow the design choices and representation of LLVM as much
as possible. The team includes an advanced PhD student from Vikram Adve’s lab at the University of Illinois, where LLVM was created,
and who is an expert in LLVM.

2. To provide a uniform gas model, across all languages. The general design philosophy of gas calculation in IELE is “no limitations, but pay
for what you consume”. For example, the more registers a IELE program uses, the more gas it consumes. Or the larger the numbers
computed at runtime, the more gas it consumes. The more memory it uses, in terms of both locations and size of data stored at
locations, the more gas it consumes. And so on.

3. To make it easier to write secure smart contracts. This includes writing requirements speci�cations that smart contracts must obey as
well as making it easier to develop automated techniques that mathematically verify/prove smart contracts correct wrt to such
speci�cations. For example, pushing a possibly computed number on the stack and then jumping to it regarded as an address makes
veri�cation hard, and thus security weaker, with current smart contract paradigms. We will have actual labels in IELE, like in LLVM, and
structured jumps to those labels. Also, avoiding the use of a bounded stack and not having to worry about stack or arithmetic over�ow
will make speci�cation and veri�cation of smart contracts signi�cantly easier.

Like KEVM, the formal semantics of EVM that we previously de�ned, validated and evaluated using the K framework, the design of IELE will also
be done in a semantics-based style, using K. Together with a fast (LLVM-based) execution backend for K, it is expected that the interpreter
obtained automatically from the semantics of IELE will be su�ciently e�cient to serve as a reference implementation of IELE.

K as a Universal Language for the Blockchain

Besides EVM, several languages have been given a complete formal semantics in K, including C, Java, and JavaScript. Several others will be given
K semantics as part of this project, including IELE itself, Solidity and Plutus. We want to allow all these languages, and possibly more as they are
given K semantics, to be used for writing smart contracts. For that, we need to enhance the capabilities and implementation of the K platform
itself, which will increase the practicality of all new and existing K semantics. We will implement several performance improvements not yet taken
beyond proofs of concept, and develop production-quality implementations of analysis features such as the K symbolic execution engine, the
semantics-based compiler (SBC), and the program veri�er, which currently have only prototype-quality implementations in the academic K project.

Faster Execution

We plan to develop a concrete execution backend to K that will be at least one order of magnitude faster than the current one. The current one is
based on translation to OCaml; we plan on translating to LLVM and specializing the pattern matcher to the speci�c patterns that occur in
semantics. We believe it will be possible to execute programs against our KEVM semantics as e�ciently as the reference C++ EVM
implementation(!). If that will indeed be the case, and we strongly believe it will, then this will mark an unprecedented moment in the history of
programming languages, when a language implementation automatically derived from a formal semantics of the language can serve as a
realistic implementation of that language. While this was proved as a concept with toy languages, it has never been proven to work with real

languages in practice. The K technology has reached a point where this is possible now. And not only to execute programs, or smart contracts,
but also to reason about them, because a formal semantics, unlike an interpreter, can also be used for formal veri�cation.

Semantics-Based Compilation

One of the most challenging components of the K framework that will be built in this project is what we call semantics-based compilation. The
following picture shows how SBC works:

We have implemented a rough prototype and were able to make it work with a simple imperative language, which we call IMP. Here is an example:

The program to the left is transformed, using the semantics, into a much simpler program that looks like an abstract machine. The four states
represent the “instructions” of the new language L’, and the edges are the new semantic rules of L’. As seen, the semantics of the various
sequences of instructions has been symbolically summarized, so that the amount of computation that needs to be done at runtime is minimized
and everything that can be done statically is hardwired in the new semantics of L’, so all done before the program is executed. Preliminary
experiments are encouraging, con�rming our strong belief that the resulting SBC programs will execute one order of magnitude, or more, faster:

These improvements to the K framework will not only yield a reasonably e�cient prototype of executing smart contracts on IELE, but, more
importantly, will give us an approach to write smart contracts in any programming languages that have a formal semantics in K.

We, the K team at RV and at UIUC, are very excited to pursue this new project with IOHK. This gives us a unique chance to demonstrate that the K
technology is ready to transit to the real world, in a space where security and trust in computation are paramount. It almost feels like smart
contracts are the opportunity that K was waiting for all along, like what it was designed and implemented for.

