Delegation and Stake Locking
in Cardano SL

© IOHK 2017

Abstract

In this article we define requirements for delegation scheme that are imposed by the real-
life concerns and weren't considered in the original Ouroboros paper. We show validity of
such concerns and describe an approach that addresses those, deviating as little as possible

from the original proposal.

Contents

Delegation in Cardano SL

Original Scheme Drawbacks
Transaction Distribution

Modified Delegation Proposal

Protocol Participation Keys and SpendingKeys

Usage with HD Wallets

Modified Delegation Proposal Analysis

Stake Locking in Cardano SL
Requirements
Proposal

Multiple Nodes with Same Key . .

Free Transaction for Bootstrap Era

Follow-up on Merkle Tree Idea

Address Attribute Malleability Issue . .

Address Structure Modification with Use of MerkleTree

Changesin Workflow.

Application of Modification to Delegation Concerns

a oo o o nn n it AR b DA W W W W

©® © ~N ~N N

O VW VW o o

Delegation in Cardano SL 3

Delegation in Cardano SL

Requirements

We need a delegation scheme for Cardano SL. This scheme:

1. Should allow us to delegate/redelegate/revoke rights on stake owned by user.

2. Shouldn’t require to expose public key on which money are kept to perform delegation.

3. Should be easy to integrate with HD wallets, i.e. to easily delegate from all keys of HD
wallet tree/subtree to somebody.

The important concern is the fact that new address’ types can be introduced via softfork in the
future, and we don’t know in advance about semantics of these types.

Original Scheme

The concept of delegation is simple: any stakeholder can allow a delegate to generate blocks
on her behalf. In the context of our protocol, where a slot leader signs the block it generates for
a certain slot, such a scheme can be implemented in a straightforward way based on proxy sig-
natures. A stakeholder can transfer the right to generate blocks by creating a proxy signing key
that allows the delegate to sign messages of the form (st, d, si;) (i.e., the format of messages
signed in Protocol mppos to authenticate a block). Protocol mppes is described in Ouroboros pa-
per, page [33]. In order to limit the delegate’s block generation power to a certain range of
epochs/slots, the stakeholder can limit the proxy signing key’s valid message space to strings
ending with a slot number si; within a specific range of values. The delegate can use a proxy
signing key from a given stakeholder to simply run Protocol mppos on her behalf, signing the
blocks this stakeholder was elected to generate with the proxy signing key.

This scheme is secure due to the Verifiability and Prevention of Misuse properties of proxy signa-
ture schemes, which ensure that any stakeholder can verify that a proxy signing key was actually
issued by a specific stakeholder to a specific delegate and that the delegate can only use these
keys to sign messages inside the key’'s valid message space, respectively. Verifiability and Pre-
vention of Misuse is described in the paper “Secure Proxy Signature Schemes for Delegation of
Signing Rights”, page [2].

We remark that while proxy signatures can be described as a high level generic primitive, it is
easy to construct such schemes from standard digital signature schemes through delegation-
by-proxy. In this construction, a stakeholder signs a certificate specifying the delegates identity
(e.g., its public key) and the valid message space. Later on, the delegate can sign messages
within the valid message space by providing signatures for these messages under its own public
key along with the signed certificate. As an added advantage, proxy signature schemes can
also be built from aggregate signatures in such a way that signatures generated under a proxy
signing key have essentially the same size as regular signatures.

An important consideration in the above setting is the fact that a stakeholder may want to
withdraw her support to a stakeholder prior to its proxy signing key expiration. Observe that
proxy signing keys can be uniquely identified and thus they may be revoked by a certificate
revocation list within the blockchain.

Eligibility Threshold

Delegation as described above can ameliorate fragmentation that may occur in the stake dis-
tribution. Nevertheless, this does not prevent a malicious stakeholder from dividing its stake
to multiple accounts and, by refraining from delegation, induce a very large committee size.
To address this, as mentioned above, a threshold T, say 1%, may be applied. This means that

https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2016/889.pdf
https://eprint.iacr.org/2003/096.pdf

Delegation in Cardano SL 4

any delegate representing less a fraction less than T of the total stake is automatically barred
from being a committee member. This can be facilitated by redistributing the voting rights of
delegates representing less than T to other delegates in a deterministic fashion (e.g., starting
from those with the highest stake and breaking ties according to lexicographic order).

Suppose that a committee has been formed, C1, ..., C,,, from a total of k£ draws of weighing by

stake. Each committee member will hold %; such votes where " k; = k. Based on the eligibil-
=1

ity threshold above it follows that m < T-! (the maximum value is the case when all stake is

distributed in 7! delegates each holding T of the stake).

Original Scheme Implementation

The original scheme of delegation is implemented in Cardano SL by two different delegation
types: heavyweight delegation and lightweight delegation.

Heavyweight Delegation

Heavyweight delegation is using stake threshold 7. It means that stakeholder has to posses
not less than T"in order to participate in heavyweight delegation. The value of this threshold is
defined in the configuration file.

Moreover, the issuer stakeholder must have particular amount of stake too, otherwise it cannot
be avalid issuer.

Proxy signing certificates from heavyweight delegation are stored within the blockchain.
Please note that issuer can post only one certificate per one epoch.

Lightweight Delegation

In contrast to heavyweight delegation, lightweight delegation doesn’t require that delegate
posses T-or-more stake. So lightweight delegation is available for any node. But proxy signing
certificates for lightweight delegation are not stored in the blockchain, so lightweight delega-
tion certificate must be broadcasted to reach delegate.

Later lightweight PSK can be verified given issuer’s public key, signature and message
itself.

Why Two Delegations?

You can think of heavyweight and lightweight delegations as of strong and weak delegations
correspondingly.

Heavyweight certificates are stored in the blockchain, so delegated stake may participate in
MPC by being added to the stake of delegate. So delegate by many heavyweight delegations
may accumulate enough stake to pass eligibility threshold. Moreover, heavyweight delegates
can participate in voting for Cardano SL updates.

On the contrary, stake for lightweight delegation won't be counted in delegate’s MPC-related
stake. So lightweight delegation can be used for block generation only.

https://github.com/input-output-hk/cardano-sl/blob/d01d392d49db8a25e17749173ec9bce057911191/core/constants.yaml#L22
https://github.com/input-output-hk/cardano-sl/blob/763822c4fd906f36fa97b6b1f973d31d52342f3f/src/Pos/Delegation/Logic/VAR.hs#L394
https://github.com/input-output-hk/cardano-sl/blob/763822c4fd906f36fa97b6b1f973d31d52342f3f/src/Pos/Delegation/Logic/VAR.hs#L394
https://github.com/input-output-hk/cardano-sl/blob/763822c4fd906f36fa97b6b1f973d31d52342f3f/src/Pos/Delegation/Logic/VAR.hs#L401
https://github.com/input-output-hk/cardano-sl/blob/9d7be20eeafac27e682551d05f4aba2faba537bc/src/Pos/Delegation/Logic/Mempool.hs#L285

Delegation in Cardano SL 5

Revocation Certificate

Revocation certificate is a special certificate that issuer creates to revoke delegation. Both
heavyweight and lightweight delegation can be revoked, but not in the same way.

The revocation certificate is just a normal one where issuer and delegate are the same (in other
words, issuer delegates to himself).

To revoke lightweight delegation issuer sends revocation certificate to the network and asks
to revoke delegation, but it cannot enforce this revocation, since lightweight PSKs are not the
part of the blockchain.

Revocation of heavyweight delegation is handled other way. Since proxy signing certificates
from heavyweight delegation are stored within the blockchain, revocation certificate will be
committed in the blockchain as well. In this case the node removes heavyweight delegation
certificate which was issued before revocation certificate. But there are two important notes
about it.

1. If the committed heavyweight delegation certificate is in the node’s memory pool, and
revocation certificate was committed as well, the delegation certificate will be removed
from the memory pool. Obviously, in this case delegation certificate will never be added
to the blockchain.

2. Ifauser commits heavyweight delegation certificate and after that he loses money, he still
can revoke that delegation, even if by that time he does not have enough money (i.e. less
than threshold 7' mentioned above).

3. Since anissuer can post only one certificate per one epoch, he won't be able to revoke his
heavyweight delegation in the current epoch, because revocation certificate is a certifi-
cate too.

Original Scheme Drawbacks

Current implementation of delegation scheme described below uses proxy signing key scheme,
whichitself requires a public key being associated with stakeholder and used to sign delegation.
Initially it was thought this public key to be an actual key which holds money, but this decreases
security by exposing public key of address before spending money from it. We propose a solu-
tion for this concern.

Transaction Distribution

Transaction distribution is another part of Cardano SL, not directly related to delegation, but
one we can exploit for its benefit.

Some addresses have multiple owners, which poses a problem of stake computation as per
Follow-the-Satoshi each coin should only be counted once towards each stakeholder’s stake
total. Unlike balance (real amount of coins on the balance), stake gives user power to con-
trol different algorithm parts: being the slot leader, voting in Update system, taking part in
MPC/SSC.

Suppose we have an address A. If it is a PublicKey-address it's obvious and straightforward
which stakeholders should benefit from money stored on this address, though it's not for
ScriptAddress (e.g. for 2 — of — 3 multisig address implemented via script we might want
to have distribution [(4,1/3),(B,1/3),(C,1/3)]). For any new address’ type introduced via
softfork in the future it might be useful as well because we don't know in advance about
semantics of the new address’ type and which stakeholder it should be attributed to.

https://github.com/input-output-hk/cardano-sl/blob/db306d7db0d05610005c5bee98c7be3918fb7947/src/Pos/Delegation/Helpers.hs#L35
https://cardanodocs.com/cardano/addresses/
https://cardanodocs.com/cardano/addresses/

Delegation in Cardano SL 6

Transaction distribution is a value associated with each transaction’s output, holding informa-
tion on which stakeholder should receive which particular amount of money on his stake. Tech-
nically it’s a list of pairs composed from stakeholder’s identificator and corresponding amount
of money. E.g. for output (4, 100) distribution might be [(B, 10), (C, 90)].

Transaction distributions are considered by both slot-leader election process and Richmen Com-
putations.

This feature can be used in similar way to delegation, but there are differences:

1. There is no certificate(s): to revoke delegation A has to move funds, providing different
distribution.

2. Only part of A’'s balance associated with this transaction output is delegated. This can
be done in chunks per balance parts (on contrary, delegation requires you to delegate all
funds of whole address at once).

Modified Delegation Proposal
Protocol Participation Keys and Spending Keys

Transaction distribution is a practical way to split spending keys and protocol participation keys.
Protocol participation keys allow to control stake, associated with transaction output.

In transaction output we specify spending key data. Thus:

* for public key address we specify spending key hash,
« for script address some spending key will be used within script probably.

Let’s consider basic use case. We want user U to send v coins to our address R. Then we find
transaction U — R in the blockchain, which shows us money were sent. We call R a receiving
address.

Let's assume we have two more addresses:

1. K, keeper address,
2. D, delegator address.

Next we form a new transaction R — K (sending all v coins from R to K) with txOQutDistr =
[(D,v)]. After this transaction will be processed, funds would be contained on address K, but
the right to issue blocks and participate in slot leader election would be held by D. This way
we effectively decoupled key which controls money and key which is used for protocol mainte-
nance.

Usage with HD Wallets

For HD wallets, we reserve (root, 0) key as a delegator. We use (root, k > 1, 2xi) keys as receiving
addresses and (root, k > 1,2 x i + 1) keys as keepers.

Delegation or redelegation of the whole HD wallet structure thenis as simple as issuing a single
lightweight/heavyweight certificate for an address (root, 0).

Modified Delegation Proposal Analysis

As careful reader may observe, when transaction with transaction distribution is being sent,
money are sent to the key K, but D is responsible for delegation. This way if even D public
component will be exposed (which is case when we would like to delegate with certificate), K's
public key won't be exposed till money are sent. This satisfies requrement 2.

https://cardanodocs.com/technical/leader-selection/
https://cardanodocs.com/technical/delegation/

Stake Locking in Cardano SL 7

Section Usage with HD Wallets describes how we satisfy requirement 3.

Stake Locking in Cardano SL

The Bootstrap erais the period of Cardano SL existence that allows only fixed predefined users
to have control over the system. The set of such users (the bootstrap stakeholders) and propo-
tion of total stake each of them controls is defined in genesis block.

Purpose of Bootstrap era is to address concern that at the beginning of mainnet majority of
stake will probably be offline (which breaks the protocol at the start). Bootstrap era is to be
ended when network stabilizes and majority of stake is present online.

The next era after Bootstrap is called the Reward era. Reward era is actually a “normal” opera-
tion mode of Cardano SL as a PoS-cryptocurrency.

Requirements
1. During Bootstrap era stake in Cardano SL should be effectively delegated to a fixed set
of keys S.
2.19/<3
3. Stake should be distributed among s € S in fixed predefined propotion, e.g. 2 : 5 : 3.

. At the end of Bootstrap era stake should be unlocked:

1. Ada buyers should be able to participate in protocol themselves (or delegate their
rights to some delegate not from S).

2. Each Ada buyer should explicitly state she wants to take control over her stake.

» Otherwise it may easily lead to situation when less than majority of stake is on-
line once Reward era starts.

3. Before this withdrawing stake action occurs, stake should be still being controlled by
S nodes.

4, (Optional) Stake transition during unlocking should be free for user.

Proposal

Let us now present the Bootstrap era solution:

1.

Initial utzo contains all the stake distributed among gcd Boot strapStakeholders. Initial utzo
consists of (tzOut, txOut Distr) pairs, so we just set txOut Distr in a way it sends all coins
to gedBootstrapStakeholders in proportion specified in genesis block.

. While the Bootstrap era takes place, users can send transactions changing initial

utzo. We enforce setting tzOutDistr for each transaction output to spread stake to
gcdBootstrapStakeholders in proportion specified by genesis block. This effectively
makes stake distribution is system constant.

. When the Bootstrap era is over, we disable restriction on tzOutDistr. Bootstrap stake-

holders will vote for Bootstrap era ending: special update proposal will be formed, where
a particular constant will be set appropriately to trigger Bootstrap era end at the point
update proposal gets adopted. System operates the same way as in Bootstrap era, but
users need to explicitly state they understand owning their stake leads to responsibility
to handle the node. For user to get his stake back he should send a transaction, specifying
delegate key(s) in tzOut Distr. It may be the key owned by user himself or the key of some
delegate (which may also be one or few of gcd BootstrapStakeholders).

https://cardanodocs.com/timeline/reward/

Follow-up on Merkle Tree Idea 8

Multiple Nodes with Same Key

To reduce the size of transactions, we want to have set of bootstrap stakeholder as small as
possible. In principle it should be as small as number of actual parties involved (e.g. IOHK, CGG,
CF each holding single key).

This way it's handy to have secret key s € gedBootstrapStakeholders can be distributed accross
multiple nodes (because usual case is you want to have multiple nodes operating in different
data centers to provide reliable service).

Simplest proposal to distribute key accross multiple nodes would be to run multiple nodes with
the same secret key. But since nodes with the same key are treated as one single entity (from
the protocol standpoint), they must participate in the algorithm in round-robin fashion, to avoid
creating two blocks for one slot, in particular:

1. Create blocks in predefined order. If key is a slot leader for slot;, slots and slots, then
node creates block at slot1, node; - at slots, and nodes - at slots.

2. Create MPC payloads accurately. If key is obliged to post M commitments, openings,
shares, then nodeg, node; and nodes will post % each.

Free Transaction For Bootstrap Era

Delegating stake back to user is done via transaction. But transactions cost money (via fees),
which violates requirement 4.4 (which is marked as an optional, but yet desirable).

As a solution to this issue we could make a snapshot of utxo U at the moment Bootstrap era
ends and don’t require fees to be withdrawn from any transaction output, contained in U. This
will effectively make delegation transition transaction free.

Follow-up on Merkle Tree Idea

Address Attribute Malleability Issue

Designing data structures for Cardano SL, we widely adopted idea of putting attributes to var-
ious data structures, including:

 transactions,

* addresses,
 update proposals,
block, block header.

This was introduced for leaving us an option to include additional data to these structures via
soft fork update.

Most of these data structures are being signed before putting to the blockchain, only exemp-
tion for this rule is address. This doesn’t seem to open significant attack surface. Addresses
are open data exchanged between users off chain. They may appear on chain only via inclusion
into transaction which is signed, this way address attributes cannot be subject for modification
by adversary.

But one design flaw of scheme is that if user U asks user V to send transaction to his address
A = (Apkhash, Aartrs), V can modify A, and send funds to A" = (Apknash, Aatirs'). This leads
to awkward situation when U actually has access to A’, i.e. may spend funds from it, but in fact
A’ # A and attrs may contain some attributes which are sensitive for workflow used by U. For
instance, if we store delegate address as attribute, V may replace delegate and U will receive
correct transaction, but funds would not be delegated to appropriate delegate.

Follow-up on Merkle Tree Idea 9

In ideal world we would prefer to restrict such cases.

Address Structure Modification with Use of Merkle Tree

Let's consider public key addresses. Public key address is at the moment composed from:

« public key hash,
« attribute list.

As is mentioned in previous section, public key address is now subject to malleability is-
sue.

But there is an idea on how to solve this issue. Instead of defining address as Address =
(PubKeyHash, Attributes) we may better define Address’ = (MerkleRoot|PubK ey, Attributes], Attributes).
By MerkleRoot here we mean root of Merkle tree built upon defined list of data.

Let's consider what will change.

Changes in Workflow

Sending transaction from B to A is same. A gives B an Address’. B sends money to it. This
Address’ is stored on the blockchain just in same way as old Address was stored.

When A wants to withdraw these funds, he uses public key, corresponding to this Address’.
By combining public key and attributes with Merkle Root one may build Address’ and check if
it's same for utzo entry that is to be spend. Interesting property here is that B can’t change
attributes without corrupting Merkle root (because B doesn’t know public key hash). And if
Merkle root presented in address is corrupted, then address is invalid by design and thus B
sends money to nowhere (which is B's problem). This effectively solves address attribute mal-
leability.

Application of Modification to Delegation Concerns

Wwith having attributes as an unmodifiable part of address, we can get rid of tzOutDistr fea-
ture and instead have delegate key distribution field as a part of address. This way we won't
need aforementioned flow with recieving money to address R, then sending R — K with
txOutDistr = [(D,value)]. We just present (K, Attributes{delegateDistr = [(D,value)]}) as
an address and then it's guaranteed that we will recieve money to K and have D as protocol
participation key (which was our intention).

	Delegation in Cardano SL
	Requirements
	Original Scheme
	Eligibility Threshold

	Original Scheme Implementation
	Heavyweight Delegation
	Lightweight Delegation
	Why Two Delegations?
	Revocation Certificate

	Original Scheme Drawbacks
	Transaction Distribution
	Modified Delegation Proposal
	Protocol Participation Keys and Spending Keys
	Usage with HD Wallets

	Modified Delegation Proposal Analysis

	Stake Locking in Cardano SL
	Requirements
	Proposal
	Multiple Nodes with Same Key
	Free Transaction for Bootstrap Era

	Follow-up on Merkle Tree Idea
	Address Attribute Malleability Issue
	Address Structure Modification with Use of Merkle Tree
	Changes in Workflow

	Application of Modification to Delegation Concerns

