Modeling and Visualization tools for Biology

Nadav (Nadi) Bar

Made with Cytoscape

Cytoscape

Cytoscape

PLOS ONE | www.plosone.org

7

What is CellDesigner?

- CellDesigner (CD) is a process diagram editor for biochemical networks.
- Supports SBML format.
- SBML lacked layout/rendering support.
 - CD-specific way developed.

CellDesigner model of Yeast M-Phase

- "Heavier" in term of mathematic and programming
- Modular
- Versatile
- Commercial
- Good support
- Toolboxes

Matlab			
) (immediate	natlab		
NATLA File Edit Debug Desktop Window Help			
The Language of Technical Com		S S D:WATLAB	<u> </u>
	Workspace * X	Figures - Figure 1 * ×	Editor - D:\MATLAB\Development E * ×
	Name ∠ Value	Electrode Charge (pC)	
	Amp 1		18 %% Low frequency
	Channel1 <1000x1 dou		20
	Channel2 <1000x1 uint8>	60	21 - y=sin(2*pi*f1*t);
	ChannelTime <1000x1 dou	50 Emission Test	
	D <4-D uint8>	Ele Edit View	Insert Tools Desktop Window Help
	DataSet1 <1x7660 dou		& @ @ 🖑 @ 🐺 🗖 📰 = 🗖
	🖬 Array Editor - L 🛛 🔻 🗙	10 20-	Emission Tests
	- B Y »□ ¥ X		- Test 1
	1 2	Figure 2 × Figure 1 × 18	Test 2 Guadratic Fit A Y: 16.01 Y: 16.01
	2 -0.099968 -0.092546	Command Window 16	A A B B B B B B B B B B B B B B B B B B
	3 -0.031874 -0.011195	>> plot (Channel3, 14	178 AT 178 9 3 40
	4 0.029369 0.060619 5 0.07763 0.11591	>> figure	Alt . S . VYAKS
	6 0.10844 0.14963	>> surf (surfacemap) O 12	
	7 0.11947 0.15923	f = 10	y=-0.23X +3X-55
	0.084690 0.10000	0(t) sin(2*pi*f) 8.2.	
		>>	
	A Start	6	
	Search Search	4	

Matlab - simulations

Matlab - Embedded

www.embedded-electronics.blogspot.com

Matlab - simulink

Matlab - simulink

Matlab - simulink

UCSF Chimera

 widely used, highly extensible program for interactive 3-D visualization of macromolecular structures

UCSF Chimera

 Chimera allows properties of molecules such as electrostatic potential to be visualized with coloring

E-CELL

- "grand aim to make precise whole cell simulation at the molecular level possible."
- "Modeling methodologies, formalisms and techniques, including technologies to predict, obtain or estimate parameters such as reaction rates and concentrations of molecules in the cell."
- "Numerical simulation algorithms."
- Modeling methodologies, formalisms and techniques, including technologies to predict, obtain or estimate parameters such as reaction rates and concentrations of molecules in the cell.
- Mathematical analysis methods.

E-CELL

E-CELL

General concept and architecture of the erythrocyte model.

Pathways for de novo GSH synthesis and export system of GSSG.

Summary

- Cytoscape
- CellDesigner
- Matlab
- Chimera
- E-CEII