
A solution for scalable randomness
The SCRAPE protocol can handle far more users than previous solutions
and can be applied to blockchain protocols, electronic voting, anonymous
instant messaging and more
! JUNE 06, 2017 " 3 MIN READ

It is well known that randomness is a fundamental resource for secure cryptographic schemes. All common
encryption and authentication schemes are only as secure as their randomness sources are good. Using a
poor randomness source can basically render insecure every cryptographic scheme that would otherwise be
secure.

In many cases, it is suCcient to have a trustworthy local source of fresh randomness (e.g. your operating
system’s randomness pool or a Random Number Generator (RNG) embedded in your CPU). However, in many
distributed applications, it is necessary to use a publicly accessible source of randomness that allows users
(and external observers) to make sure they are all getting the same random values. With such applications in
mind, in 1983 Michael Rabin introduced the concept of a randomness beacon, a publicly accessible entity
that provides a periodically refreshed random value to its clients. More recently, NIST, the National Institute of
Standards and Technology in the United States, started offering a randomness beacon service that derives its

IOHK | IOHK | BLOG

randomness from quantum physical processes.

When users are willing to trust a centralised randomness beacon they can simply choose one of them to
perform this role or use a publicly available beacon, such as the one from NIST. However, standard
randomness beacons provide no means for users to verify that the output values are indeed random and not
skewed in a way that gives an advantage to an attacker.

As we know, cryptographic schemes have suffered both from poor implementations and from governmental
agencies (e.g. the NSA) that actively work to undermine existing and future standards. In this context, a
centralised randomness beacon could be providing bad randomness because of simple implementation
mistake or in order to do the bidding of third party attacker who has undermined the central randomness
generator or simply presented the people running the service with a subpoena that compels them to do so.

Using a coin tossing protocol (a concept also introduced by Rabin in 1981 [insert link to) is an obvious
approach to (partially) solve this problem. Coin tossing allows several users to come together and generate
an output that is guaranteed to be uniformly random without having to trust each other or any third party.

In a coin tossing protocol, good randomness is obtained if at least one of the parties is honest. If you run a
coin tossing among many servers, somebody who trusts at least one of the servers can be assured that the
output is truly random. In many applications (such as cryptocurrencies) we assume that at least half of all
parties are honest by design.

Even though using coin tossing protocols solves the trust problem, it still does not make it any easier to
ensure that all users will receive the random output. For example, a user with a faulty internet connection or
an attacker who wants to mount a Denial-of-Service attack against the protocol (and consequently the
application using the Vnal randomness) can simply abort (i.e. stop sending protocol messages) before the
output is obtained, keeping all the other users from receiving randomness. In fact, a malicious user can do
even worse, he can execute the protocol up to the point where he learns the random output but still not send
the Vnal message that would enable the other users to also learn this output.

Tal Rabin and Ben-Or introduced a classical method for making sure all users receive the proper protocol
output – assuming at least a majority of them is honest – in a seminal paper in 1989. The main idea is to use
“secret sharing” to split each user’s input into “shares” that do not reveal any information about the input by
themselves but allow for total recovery of the input if a suCcient number of them are put together. If each
user is given a share of every other user’s input – such that the inputs can be recovered if more than 50% of
the shares are pooled – malicious users still cannot learn anything because we assume that more than 50%
of the users are honest. However, if a malicious user aborts the protocol at some point, the honest users can
pool their shares to recover the malicious user’s input and Vnish the protocol by themselves.

This general approach can be used to make sure that all the users running a coin tossing protocol will receive
the Vnal random value. However, this still does not allow users and external observers to make sure that the
output is being generated correctly. In order to do that, the users must use a kind of secret sharing that is
publicly veriVable, meaning that anyone can make sure that the shares of inputs are correctly generated. This
prevents malicious users from posting invalid shares and then aborting in such a way that the honest users
cannot reconstruct their inputs. This approach has been used for generating publicly veriVable randomness in
the Ouroboros Proof-of-Stake based, permissionless consensus protocol and for constructing a stand-alone
randomness beacon in a paper by Syta et al. that will be presented at the IEEE Symposium on Security and
Privacy 2017.

The main ingredient in building randomness beacons through this approach is Publicly VeriVable Secret
Sharing (PVSS), a type of secret sharing scheme introduced by Stadler that allows users to split their inputs in
shares whose validity can be promptly veriVed by any third party. Using such schemes, it is possible to
construct coin tossing protocols with Guaranteed Output Delivery through the approach of Rabin and Ben-or,
meaning that every user is guaranteed to receive the Vnal randomness produced by the protocol. However,
the PVSS scheme from Schoenmakers, which until recently was the most eCcient PVSS scheme, still
requires a number of modular exponentiations that is quadratic in the number of users, meaning that if there
are n users running the protocol, verifying the n shares produced by one of them requires O(n^2)
exponentiations. Note that this poses serious scalability issues since this quadratic overhead means that the
number of expensive modular exponentiations required for verifying n shares grows quite a lot given even a
small increase in the number of users.

In a recent joint paper with Ignacio Cascudo, SCRAPE: Scalable Randomness Attested by Public Entities that
will presented at ACNS 2017 in Japan this July, we have solved this scalability problem by introducing a PVSS
scheme that only requires O(n) modular exponentiations to verify n shares (5n modular exponentiations to be
precise) while maintaining eCciency of all other protocol components. The main idea behind our protocol is
to use a cheap information theoretical trick to verify the validity of shares instead of performing expensive
modular exponentiations. As a result, our protocol requires only 5n modular exponentiations in the veriVcation
phase and 4n modular exponentiations in the distribution phase (where shares are generated), while the
protocol by Schoenmakers requires 4n+(n^2)/2 exponentiations for veriVcation and 4n+t exponentiations for
distribution, where n is the number of users/shares and when n/2 shares are required for reconstructing the
secret. Our eCcient PVSS protocol can be used to improve the randomness generation component of
Ouroboros and the recent result by Syta et al.

