

THE UNIVERSITY of EDINBURGH School of Mathematics

Improving a Mathematics Diagnostic Test

Dr George Kinnear G.Kinnear@ed.ac.uk

Outline

- Background of the test
- Analysis
- Implementing changes

The Mathematics Diagnostic Test (MDT)

- Administered online to incoming students
 - to help them study
 - to inform decisions
- Multiple choice and numerical answers
- Based on SQA Higher content

MapleT.A.						
Back Nex	t Question Menu	Grade	Help	Quit & Save		
			Remain	Question 1 of 20 ing Time (hh:mm:ss): 01:29:36		
Question 1: (5 points) Assuming that the denominators are never zero, which of the following statements are true in general? Select all the true statements - there may be more than one. $\left(\frac{x^3}{a y}\right) \left(\frac{a y^2}{b x^2}\right) = \frac{x^5}{b a y}$ $\left(\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}\right)$ $\left(\frac{a}{b}\right) \left(\frac{c}{d}\right) = \frac{a c}{b d}$ $\left(\frac{a}{b}\right) \left(\frac{c}{d}\right) = \frac{a c}{b d}$ $\left(\frac{1}{x}\right) \left(x + \frac{1}{x}\right) = 1 + \frac{1}{2x}$ Partial Grading Explained						

History of the test

2011 2013 32 questions, Project students check performance Maple T.A. 2017 2012 Move to STACK **Project students** reduce to 20 questions Review of test content

Summer 2017: Project team

- George Kinnear
- Chris Sangwin
- Toby Bailey
- Tereza Burgetova
- Joanne Ruth Imanuel

Summer 2017: Project aims

- Evaluate effectiveness of existing test
- Produce revised test, informed by statistical analysis

Classifying the questions

- We applied the "Mathematical Assessment Task Heirarchy" (Smith *et al.*, 1996)
- Classification is based on the skills needed to complete the task successfully
- MATH was designed to help construct exams which test a broader range of skills

MATH Taxonomy

Group A	FKFS: Factual Knowledge and Fact Systems		
procedures	COMP: Comprehension		
	RUOP: Routine Use of Procedures		
Group B Using existing	IT: Information transfer		
knowledge in new ways	AINS: Application in New Situations		
Group C	JI: Justifying and Interpreting		
conceptual	ICC: Implications, Conjectures and Comparisons		
KIIOWIEUge	EVAL: Evaluation		

Adapted from Darlington (2014)

Group A example

Question 6: (5 points)

The expression $16 \cos(x) + 30 \sin(x)$ can be written in the form $A \sin(x + \varphi)$, where A > 0 and $-\pi < \varphi < \pi$. Find the values of A and φ . Give the value of φ , in radians, correct to at least three decimal places.

- RUOP: Routine Use of Procedures
- Using a procedure/algorithm in a familiar context

Group B example

Question 14: (5 points)

A curve has equation $y=-rac{1}{3}\,\,x^3+x^2-4\,x+9$.

The line y = mx + c is a tangent to the curve at the point (a,b) .

(a) Find the values of m to complete the following statements:

(b) What is the maximum value of *m*, over all possible values of *a*?.

Nh	unn	bo	-
INU		DE	

- AINS: Application in New Situations
- Choose and apply appropriate methods/information in new situations

Group A Routine procedures	FKFS: Factual Knowledge and Fact Systems	Recall previously learnt information	Question 3: (5 points) Functions g and h are defined on suitable domains by $h(x)=rac{1}{2}x^2+4$ and $g(x)=2^{-3x}$. Given that $h(g(x))=2^{f(x)}+4$, find an expression for $f(x)$.
	COMP: Comprehension	Decide whether conditions of a simple definition are satisfied	$\begin{array}{ccc} & 6 \ x \\ \hline & -3 \ x - 1 \\ \hline & -\frac{3}{2} \ x^2 + 4 \end{array}$
	RUOP: Routine Use of Procedures	Using a procedure/algorithm in a familiar context	$\bigcirc -6 x - 1$
	1100000100		Question 8: (5 points)
Group B Using existing mathematical knowledge in new ways	IT: Information transfer	Transferring information from verbal to numerical or vice versa	Find the angle between the vectors $(-3, -4, 5)$ and $(-2, -4, -5)$. Give your answer in radians, accurate to at least 3 decimal places.
		Recognizing	Number
		generic formula in particular contexts	
	AINS: Application in New Situations	Choose and apply appropriate methods/information in new situations	Question 20: (5 points) The function $f(x)$ is such that $f(-3) = -7$ and its derivative $f'(-3) = -9$. Given that $g(x) = xf(x)$, what is the value of $g'(-3)$?
THE UNI	versity of edinburgh of Mathematics		Number

MATH Taxonomy

- Overall in the MDT:
 - 70% were Group A (FKFS/RUOP)
 - 30% were Group B (IT/AINS)

Count of Question by Type

What we learned

- The test might benefit from more emphasis on Group B tasks
- Group C was completely missing

The data

- Raw scores for tests taken in 2013-2016
- Linked to student records (gender, entry qualifications, course results, ...)

Histogram of total scores frequency (all 3471 students)

The data

 "Non-serious" attempts were identified and removed

Total scores frequency: 3248 students

The data

- Raw scores (5 marks per question) were turned into "binary" scores
- 1 mark for each question
- Must be completely correct to get the mark

rhe university of edinburgh School of Mathematics

Total score frequency: binary scale, 3248 students

Cronbach's alpha

- A measure of the reliability of the test
 - Split the test into two halves
 - What is the correlation between the two halves?
 - Take the average of this over all possible splits
- For the MDT, *α*=**0.7848**

Item response theory

- A sophisticated model, assuming students' scores depend on their ability as well as properties of the question
- The probability of a student with ability θ answering correctly is modelled as:

$$P(\theta, b, a) = \frac{\exp \left[a(\theta-b)\right]}{1+\exp\left[a(\theta-b)\right]}$$

where *b* is the difficulty and *a* is the discrimination

Item Characteristic Curves

Ability

Item Information Curves

Ability

Test Information Function

Factor analysis

- Suppose we had 3 questions, scored 0 or 1
- The possible student responses are the vertices of the unit cube
- Now suppose Q1 and Q2 are related, but Q3 is not...

Factor analysis

- Most of our data points will lie on the vertices with Q1=Q2
- So rather than 3D data, it's essentially 2D

Questions factor loadings on Factor 1 vs on Factor 2

Factor 1

What we learned

- The reliability of the test is acceptable
- Most items are performing very well, but some are poor discriminators
- The test could be better at distinguishing students of medium-to-high ability
- We can see a distinction between Group A and B questions in the student response data

Relationship to later performance

- The test is a reasonably good predictor of Year 1 performance
- The strongest correlation was with Mathematics for Physics 1 (0.643)

THE UNIVERSITY of EDINBURGH School of Mathematics

MfP1 Exam Mark against Diagnostic Test Years 2015/16 and 2016/17

Diagnostic Test Score

Relationship to later performance

- Correlation with Introduction to Linear Algebra is 0.477
- Analysis of variance suggests that Group B questions are the best predictors

THE UNIVERSITY of EDINBURGH School of Mathematics

ILA Exam Mark against Diagnostic Test Score Years 2015/16 and 2016/17

Diagnostic test score

Implementing changes

Goals

- Remove poorly performing items
- Introduce:
 - a greater proportion of Group B questions
 at least one Group C question
- Try to add items with good discrimination at higher ability level

Results

- 941 attempts so far
- From data generated by Moodle:
 - Cronbach's alpha: 0.8595 (up from 0.7848)
 - The two new Group B questions seem to be among the more difficult questions
- More detailed analysis to follow in 2018...

Conclusion

- The MATH taxonomy can be a useful tool when thinking about test design
- Statistical tools can also help to produce a more focused test
 - Cronbach's alpha
 - Facility/discrimination/IRT
 - Factor analysis

References

- Darlington, E. (2014) 'Contrasts in mathematical challenges in A-level Mathematics and Further Mathematics, and undergraduate mathematics examinations', *Teaching Mathematics and its Applications*. Oxford University Press, 33(4), pp. 213–229. doi: 10.1093/teamat/hru021.
- Smith, G. *et al.* (1996) 'Constructing mathematical examinations to assess a range of knowledge and skills', *International Journal of Mathematical Education in Science and Technology*. Taylor & Francis Group, 27(1), pp. 65–77. doi: 10.1080/0020739960270109.

