Improving a Mathematics Diagnostic Test

Dr George Kinnear
G.Kinnear@ed.ac.uk
@georgekinnear
Outline

• Background of the test
• Analysis
• Implementing changes
The Mathematics Diagnostic Test (MDT)

- Administered online to incoming students
 - to help them study
 - to inform decisions
- Multiple choice and numerical answers
- Based on SQA Higher content
History of the test

- **2011**: 32 questions, Maple T.A.
- **2012**: Project students reduce to 20 questions
- **2013**: Project students check performance
- **2017**: Move to STACK, Review of test content
Summer 2017: Project team

- George Kinnear
- Chris Sangwin
- Toby Bailey
- Tereza Burgetova
- Joanne Ruth Imanuel
Summer 2017: Project aims

- Evaluate effectiveness of existing test
- Produce revised test, informed by statistical analysis
Analysis
Classifying the questions

- We applied the “Mathematical Assessment Task Heirarchy” (Smith *et al.*, 1996)

- Classification is based on the skills needed to complete the task successfully

- MATH was designed to help construct exams which test a broader range of skills
MATH Taxonomy

<table>
<thead>
<tr>
<th>Group A</th>
<th>Routine procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>FKFS: Factual Knowledge and Fact Systems</td>
<td></td>
</tr>
<tr>
<td>COMP: Comprehension</td>
<td></td>
</tr>
<tr>
<td>RUOP: Routine Use of Procedures</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group B</th>
<th>Using existing mathematical knowledge in new ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>IT: Information transfer</td>
<td></td>
</tr>
<tr>
<td>AINS: Application in New Situations</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group C</th>
<th>Application of conceptual knowledge</th>
</tr>
</thead>
<tbody>
<tr>
<td>JI: Justifying and Interpreting</td>
<td></td>
</tr>
<tr>
<td>ICC: Implications, Conjectures and Comparisons</td>
<td></td>
</tr>
<tr>
<td>EVAL: Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Darlington (2014)
Group A example

Question 6: (5 points)
The expression $16 \cos(x) + 30 \sin(x)$ can be written in the form $A \sin(x + \varphi)$, where $A > 0$ and $-\pi < \varphi < \pi$.

Find the values of A and φ. Give the value of φ, in radians, correct to at least three decimal places.

$A = \quad [\text{Num}]$

$\varphi = \quad [\text{Num}]$

• RUOP: Routine Use of Procedures
• Using a procedure/alGORITHM in a familiar context
Group B example

Question 14: (5 points)

A curve has equation \(y = \frac{1}{3} x^3 + x^2 - 4x + 9 \).
The line \(y = mx + c \) is a tangent to the curve at the point \((a, b)\).

(a) Find the values of \(m \) to complete the following statements:
- When \(a = -1 \), \(m = \) [Num]
- When \(a = 2 \), \(m = \) [Num]

(b) What is the maximum value of \(m \), over all possible values of \(a \) ?

- AINS: Application in New Situations
- Choose and apply appropriate methods/information in new situations
Group A

Routine procedures

- **FKFS: Factual Knowledge and Fact Systems**
 - Recall previously learnt information

COMP: Comprehension

- Decide whether conditions of a simple definition are satisfied

RUOP: Routine Use of Procedures

- Using a procedure/algorithm in a familiar context

Group B

Using existing mathematical knowledge in new ways

- **IT: Information transfer**
 - Transferring information from verbal to numerical or vice versa
 - Recognizing applicability of a generic formula in particular contexts

- **AINS: Application in New Situations**
 - Choose and apply appropriate methods/information in new situations

Question 3: (5 points)

Functions g and h are defined on suitable domains by $h(x) = \frac{1}{2}x^2 + 4$ and $g(x) = 2^{-3x}$.

Given that $h(g(x)) = 2f(x) + 4$, find an expression for $f(x)$.

- $6x$
- $-3x - 1$
- $\frac{-3}{2}x^2 + 4$
- $-6x - 1$

Question 8: (5 points)

Find the angle between the vectors $(-3, -4, 5)$ and $(-2, -4, -5)$.

Give your answer in radians, accurate to at least 3 decimal places.

[Number]

Question 20: (5 points)

The function $f(x)$ is such that $f(-3) = -7$ and its derivative $f'(-3) = -9$.

Given that $g(x) = xf(x)$, what is the value of $g'(-3)$?

[Number]
MATH Taxonomy

• Overall in the MDT:
 ▪ 70% were Group A (FKFS/RUOP)
 ▪ 30% were Group B (IT/AINS)
What we learned

• The test might benefit from more emphasis on Group B tasks

• Group C was completely missing
The data

- Raw scores for tests taken in 2013-2016
- Linked to student records (gender, entry qualifications, course results, …)
The data

• “Non-serious” attempts were identified and removed
The data

- Raw scores (5 marks per question) were turned into “binary” scores
- 1 mark for each question
- Must be completely correct to get the mark

Total score frequency: binary scale, 3248 students
Cronbach’s alpha

• A measure of the reliability of the test
 – Split the test into two halves
 – What is the correlation between the two halves?
 – Take the average of this over all possible splits

• For the MDT, $\alpha=0.7848$
Item response theory

• A sophisticated model, assuming students’ scores depend on their ability as well as properties of the question
• The probability of a student with ability θ answering correctly is modelled as:

$$P(\theta, b, a) = \frac{\exp[a(\theta - b)]}{1 + \exp[a(\theta - b)]}$$

where b is the difficulty and a is the discrimination
Factor analysis

• Suppose we had 3 questions, scored 0 or 1
• The possible student responses are the vertices of the unit cube
• Now suppose Q1 and Q2 are related, but Q3 is not…
Factor analysis

- Most of our data points will lie on the vertices with $Q_1=Q_2$
- So rather than 3D data, it’s essentially 2D
Questions factor loadings on Factor 1 vs on Factor 2

MATH
Group B (mostly)
What we learned

• The reliability of the test is acceptable
• Most items are performing very well, but some are poor discriminators
• The test could be better at distinguishing students of medium-to-high ability
• We can see a distinction between Group A and B questions in the student response data
Relationship to later performance

- The test is a reasonably good predictor of Year 1 performance.
- The strongest correlation was with Mathematics for Physics 1 (0.643).
Relationship to later performance

- Correlation with Introduction to Linear Algebra is 0.477
- Analysis of variance suggests that Group B questions are the best predictors
Implementing changes
Goals

• Remove poorly performing items

• Introduce:
 – a greater proportion of Group B questions
 – at least one Group C question

• Try to add items with good discrimination at higher ability level
Results

• 941 attempts so far
• From data generated by Moodle:
 – Cronbach’s alpha: 0.8595 (up from 0.7848)
 – The two new Group B questions seem to be among the more difficult questions
• More detailed analysis to follow in 2018…
Conclusion

• The MATH taxonomy can be a useful tool when thinking about test design

• Statistical tools can also help to produce a more focused test
 – Cronbach’s alpha
 – Facility/discrimination/IRT
 – Factor analysis
Thank you!
References
