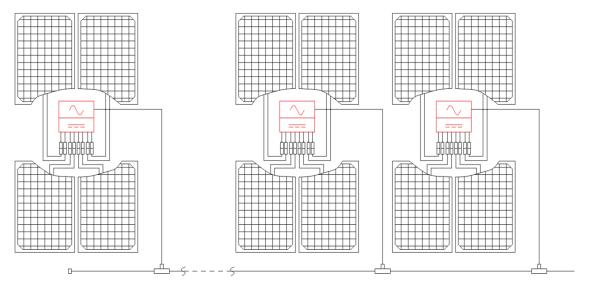


Leading the Industry in **Solar Microinverter Technology**

QT2

The most powerful 3-phase **Quad microinverter**

- Designed for 3-phase grid connection (208V or 480V)
- Single unit connects to 4 modules, 2 MPPTs, module-level DC voltage
- Maximum continuous AC output power 1728VA @ 208V, 1800VA @ 480V
- Engineered to harness today's high-capacity PV modules (Maximum input current 20A)
- Integrated safety protection relay
- Adjustable power factor
- Balancing 3-phase output
- Compatible with both △ and Y 3-phase gric


PRODUCT FEATURES

APsystems introduces its 2nd generation of native 3-phase quad microinverters, reaching unprecedented power outputs of 1728VA (for 208V) and 1800VA (for 480V) to harness the power of today's high-output PV modules. The QT2 microinverter gives commercial installers a powerful plug-and-play MLPE inverter that installs faster than competing solutions and is inherently compliant to rapid shutdown requirements.

With balancing 3-phase output, 4 DC inputs and encrypted ZigBee wireless, installers and system owners alike benefit from new QT2 architecture platform. The innovative design facilitates thermal dissipation while maximizing power production. The components are encapsulated with silicone to reduce stress on the electronics, dissipate heat, enhance waterproof properties, and ensure maximum reliability of the system. 24/7 access to performance data through apps or APsystems EMA web-based portal facilitate remote diagnosis and troubleshooting.

The new QT2 is grid interactive through its Reactive Power Control (RPC) feature, designed to better manage photovoltaic power spikes in the grid. With an excellent performance and high converstion efficiency, a unique integration with less components, the QT2 is a game changer for commercial solar.

WIRING SCHEMATIC

Datasheet | QT2 3-Phase Microinverter

QT2-208 QT2-480 Model

Region Input Data (DC) USA/Canada

Recommended PV Module Power (STC) Range	315Wp-670Wp+
Peak Power Tracking Voltage	30V-45V
Operating Voltage Range	26V-60V
Maximum Input Voltage	60V
Maximum Input Current	20A x 4
Maximum input short circuit current	25A per input

Output Data (AC)

Maximum Continuous Output Power	1728VA	1800VA
Nominal Output Voltage/Range(1)	208V/183V-229V	480V/422V-528V
Nominal Output Current	4.8Ax3	2.17Ax3
Maximum Output Fault Current (ac) And Duration	L-L:85.4Apk, 13.6ms of duration, 4.967Arms	L-L:35.1Apk, 13.9ms of duration, 2.199Arms
Nominal Output Frequency/Range ⁽¹⁾	60Hz/58.8Hz-61.2Hz(HECO:57Hz-63Hz)	
Power Factor(Default/Adjustable)	0.99/0.8 leading0.8 lagging	

Maximum Units per 30A branch⁽²⁾ AC Bus Cable 10AWG

Efficiency

Peak Efficiency	96.	5%
CEC Efficiency	96%	95.5%
Nominal MPPT Efficiency	99.5%	
Night Power Consumption	80mW	200mW

Mechanical Data

Operating Ambient Temperature Range ⁽³⁾	-40 °F to +149 °F (-40 °C to +65 °C)
Storage Temperature Range	-40 °F to +185 °F (-40 °C to +85 °C)
Dimensions (W x H x D)	14" × 9.5" × 1.8" (359mm X 242mm X 46mm)
Weight	13 lbs (6kg)
DC Connector Type	Stäubli MC4 PV-ADBP4-S2&ADSP4-S2
Cooling	Natural Convection - No Fans
Enclosure Environmental Rating	Type 6

Features

Communication (Inverter To ECU) ⁽⁴⁾	Encrypted ZigBee
Isolation Design	High Frequency Transformers, Galvanically Isolated
Energy Management	Energy Management Analysis (EMA) system
Warranty ⁽⁵⁾	10 Years Standard ; 25 Years Optional

Compliances

Safety, EMC & Grid Compliances	UL1741; CSA C22.2 No. 107.1-16; UL1741SA; UL1741SB;
	IEEE1547; Rule 21; SRD-V2.0; FCC Part15; ICES-003;
	NEC2014&NEC2017&NEC2020&NEC2023
	Section 690.11 DC Arc-Fault circuit Protection;
	NEC2014&NEC2017&NEC2020&NEC2023 Section

(1) Nominal voltage/frequency range can be extended beyond nominal if required by the utility. (2) Limits may vary. Refer to local requirements to define the number of microinverters per branch in your area.

(3) The inverter may enter to power de-grade mode under poor ventilation and heat dissipation installation environment.

(4) Recommend no more than 80 inverters register to one ECU for stable communication.

(6) APsystems' Microinverter Systems fully meet the rapid shutdown requirement without the

need to install additional electrical equipment

APsystems

8627 N. Mopac Expy, Suite 150, Austin, TX 78759 | APsystems.com

© All Rights Reserved

Specifications subject to change without notice please ensure you are using the most recent update found at <u>usa.APsystems.com</u> or canada.APsystems.com

690.12 Rapid Shutdown of PV systems on Buildings

requirements for Distributed Energy Resources (UL 1741) and identified with the CSA Listed Mark