American Football and Exertional Heatstroke

What Have We Learned in the Last 50 years?

Kevin C. Miller, PhD, AT, ATC

Central Michigan University

Thank you

ON

GLATA, 2017

Funding Disclosure and Conflict of Interest

- O private companies have funded any of the studies discussed today
- The views in this presentation are my own and may not be the views of CMU or my colleagues.

 I hope to present unbiased information but participants must use discretion when using the information contained in this presentation

This Presentation will Answer the Following Questions

What can we do about it?

GLATA, 2017

Learning Objectives

- 1. List reasons why American football players are prone to EHS including how the American football uniform contributes to uncompensable heat stress.
- 2. Justify situations where it may not be necessary to remove American football uniforms before initiating cold-water immersion or temperate-water immersion to treat EHS.
- 3. Explain why cooling vests should not be used to treat or prevent EHS in American football players.
- 4. Describe what happens, physiologically, to athletes that do not receive immediate treatment for EHS.

Review: Evidence-Based Medicine Hierarchy

Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence

Question	Step 1 (Level 1*)	Step 2 (Level 2*)	Step 3 (Level 3*)	Step 4 (Level 4*)	Step 5 (Level 5)
How common is the problem?	Local and current random sample surveys (or censuses)	Systematic review of surveys that allow matching to local circumstances**	Local non-random sample**	Case-series**	n/a
Is this diagnostic or monitoring test accurate? (Diagnosis)	Systematic review of cross sectional studies with consistently applied reference standard and blinding	Individual cross sectional studies with consistently applied reference standard and blinding	Non-consecutive studies, or studies without consistently applied reference standards**	Case-control studies, or "poor or non-independent reference standard**	Mechanism-base reasoning
What will happen if we do not add a therapy? (Prognosis)	Systematic review of inception cohort studies	Inception cohort studies	Cohort study or control arm of randomized trial*	Case-series or case- control studies, or poor quality prognostic cohort study**	n/a
Does this intervention help? (Treatment Benefits)	Systematic review of randomized trials or <i>n</i> -of-1 trials	Randomized trial or observational study with dramatic effect	Non-randomized controlled cohort/follow-up study**	Case-series, case-control studies, or historically controlled studies**	Mechanism-base reasoning
What are the COMMON harms? (Treatment Harms)	Systematic review of randomized trials, systematic review of nested case-control studies, <i>n</i> - of-1 trial with the patient you are raising the question about, or observational study with dramatic effect	Individual randomized trial or (exceptionally) observational study with dramatic effect	Non-randomized controlled cohort/follow-up study (post-marketing surveillance) provided there are sufficient numbers to rule out a common harm. (For long-term harms the duration of follow-up must be sufficient.)**	Case-series, case-control, or historically controlled studies**	Mechanism-base reasoning
What are the RARE harms? (Treatment Harms)	Systematic review of randomized trials or <i>n</i> -of-1 trial	Randomized trial or (exceptionally) observational study with dramatic effect	•		
Is this (early detection) test worthwhile? (Screening)	Systematic review of randomized trials	Randomized trial	Non -randomized controlled cohort/follow-up study**	Case-series, case-control, or historically controlled studies**	Mechanism-base reasoning

Review: PEDro Scale

PEDRO SCALE

Eligibility criteria were specified	No 🛄	Yes 🗅	Where:
Subjects were randomly allocated to groups (in a crossover study, subjects were randomly allocated an order in which treatments were received)	No 🗖	Yes 🗅	Where:
Allocation was concealed	No 🗖	Yes 🗖	Where:
The groups were similar at baseline regarding the most important prognostic indicators	No 🗖	Yes 🗖	Where:
There was blinding of all subjects	No 🗖	Yes 🗖	Where:
There was blinding of all therapists who administered the therapy	No 🗖	Yes 🗅	Where:
There was blinding of all assessors who measured at least one key outcome	No 🗖	Yes 🗖	Where:
Measures of at least one key outcome were obtained from more than 85% of the subjects initially allocated to groups	No 🗖	Yes 🗖	Where:
All subjects for whom outcome measures were available received the treatment or control condi- tion as allocated or, where this was not the case, data for at least one key outcome was analyzed by "intention to treat"	No 🗖	Yes 🗖	Where:
The results of between-group statistical comparisons are reported for at least one key outcome	No 🗀	Yes 🗖	Where:
The study provides both point measures and meas- ures of variability for at least one key outcome	No 🗖	Yes 🗅	Where:

Basics of PEDro:

- Used to grade RCTs*
- 11 criteria (only 10 scored)
- The higher the PEDro score, the better the study

Question #1: Is EHS a Concern for American Football Athletes?

EHI Epidemiology in American Football Athletes

Kerr Z, Casa D, Marshall S, Comstock R. Epidemiology of exertional heat illness among U.S. high school athletes. Am J Prev Med. 2013;44:8-14.

Figure 1. Rates of exertional heat illness among U.S. high school athletes, by year

Note: Data are from the High School Sports-Related Injury Surveillance System, U.S., 2005/2006-2010/2011. AE is defined as one athlete participating in one athletic practice or competition.

AE, athlete exposure

EBM Tier Strongest 2 3 4 5 Weakest **PEDro** Score

Football!

EHS Epidemiology in American Football Athletes

Kucera KL, Klossner D, Colgate B, Cantu RC. Annual survey of football injury research: 1931-2015. 2016:1-36.

EH	IS Deaths:	1931-1978	EHS Deaths:	1979-1998	EHS Deaths: 1	999-2015		Strongest
50 Years	1931-1954 ¹ 1955 1956-1958 1959 1960-1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977	0 1 0 4 16 6 1 2 5 5 8 4 7 3 1 0 1 1	1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1990 1991 1992 1993 1994 1995 1996 1997	2 1 2 2 1 3 0 0 0 1 2 2 1 0 1 0 1 0 0 5 2 1	1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2010 2011 2012 2013 2014 2015	2 3 0 0 3 3 5 2 6 4 5 6 1 0 2 2		2 3 4 5 Weakest PEDro Score
	Total : Total :	⁴ = 68 or Last 84	Total = Years = 146	₄ = 31 6 La	Total =	47 • 119	— r	N/A
GLATA, 201	7		()#Oz	Carlos and			CM	IJ

EBM Tier

IIVERSITY

Question #2: Why are American Football Players at a Higher Risk of EHS than other Athletes?

Reasons for EHS in Football

- 1.Equipment
 - Evaporative BSA
 Metabolism
- 2.Anthropometrics
- 3.Time of the Year
- 4.Environmental Conditions

hard

very hard

very, very hard

Reasons for EHS: Equipment & BSA

McCullough E, Kenney W. Thermal insulation and evaporative resistance of football uniforms. *Med Sci Sports Exerc*. 2003;35:832-837.

TABLE 3. Evaporative resistance data for football uniform ensembles. Evaporative **Total Evaporative Evaporative Resistance** Moisture Transmissibility of Clothina **Permeability Index** Resistance $R_{e,cl}$ (m²·kPa·W²¹)^a i,,,/, (clo) i... (unitless)b $R_{p,1}$ (m²·kPa·W²¹) **Ensemble Tested** 0.29 0.022 0.37 G1: game uniform (warm weather) 0.032 0.25 0.36 0.028 0.038 G2: game uniform (temperate) 0.24 0.36 0.029 G3: game uniform (cold weather) 0.039 0.31 0.38 0.020 P1: practice uniform (with hip girdle) 0.030 0.35 0.017 0.40 P2: practice uniform (shorts only) 0.0270.47 0.42 0.009 Reference ensemble (T-shirt and shorts) 0.020 ^a $R_{o,cl}$ was calculated with an $R_{o,a}$ value of 0.012 m² kPa-W⁻¹ and the f_{ol} values shown in Table 2. ^b i_m for the nude manikin was 0.47. Evaporative Resistance Goes Up with Permeability Index Goes PADS = Harder to Evaporate Sweat Down with PADS = Harder to Evaporate Sweat

EBM Tier

Strongest

2

3

4

5

Weakest

PEDro

Score

N/A

Reasons for EHS: Equipment & Metabolism

Mathews D, Fox E, Tanzi D. Physiological responses during exercise and recovery in a football uniform. J Appl Physiol. 1969;26:611-615.

EBM Tier

Strongest

Reasons for EHS: Anthropometrics

Grundstein AJ, Ramseyer C, Zhao F, et al. A retrospective analysis of American football hyperthermia deaths in the United States. *Int J Biometeorol.* 2012; 56: 11-20.

Age	n	Weight (kg)	n	BMI	All linemen n	Linemen ≤18 years n (%/%HS linemen)	Position	n	Clothing	n
11	1	<70	2	<20	1	1 (4/1)	Lineman	32	Full uniform	4 ^a
12	0	70-<80	1	20-24	1	0 (0/28)	Backs	4	Practice uniform	8
13	4	80-<90	1	Overweight (25–29)	7	2 (9/41)	Other	1	Shorts only	8
14	4	90-<100	8	Obese Class I (30-34)	18	8 (35/21)	Unknown	21	Unknown	38
15	7	100-<110	5	Obese Class II (35-39)	9	8 (35/7)				
16	10	110-<120	7	Obese Class III (≥40)	6	4 (17/2)				
17	18	120-<130	10	Unknown		3				
18	4	130-<140	5							
19	1	140-<150	0							
20	1	150-<160	2							
21	2	160-<170	1							
22	1	Unknown	16							

Table 2 Characteristics of football hyperthermia fatalities. Percent of High School (HS) linemen is rounded to the nearest percent and based on data in Laurson and Eisenmann (2007)

^a Only two deaths with the athlete in full uniform had corresponding data on time of death and were within 50 km of a meteorological observing station

- 60% of fatalities (known data) weighed >110 kg (242.5 lb)
- 79% were considered obese.

Reasons for EHS: Anthropometrics

Armstrong LE, Johnson EC, Casa DJ, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train. 2010;45:117-127.

EBM Tier

Strongest

Reasons for EHS: Time of Year

Grundstein AJ, Ramseyer C, Zhao F, et al. A retrospective analysis of American football hyperthermia deaths in the United States. *Int J Biometeorol.* 2012; 56: 11-20.

Time of day	n	Time of season	n	Month	n	Sub-month (Jul-Sep)	n
Morning (8:00 am-12:00 pm LDT)	21	1st practice	9	Jan-May	1	Jul 1-15	7
Afternoon (2:00-6:00 pm LDT)	15	2nd practice	3	Jun	0	Jul 16–31	9
Unknown	22	3rd practice	1	Jul	10	Aug 1–15	27
		1st practice with pads	1	Aug	37	Aug 16–31	11
		Unknown	44	Sep	9	Sep 1-15	4
				Oct	1	Sep 16-30	2
				Nov-Dec	0		
LDT Local daylight time • 58% of de • 86% of de	eaths eaths	(known data) h (known data) h	appe appe	en at <u>Mor</u> en in first	r <u>ning</u> 2 pra	Practice!	n

Table 1 Temporal patterns of football hyperthermia fatalities

• 64% of deaths happen in August

UNIVERSITY

Reasons for EHS: Time of Year

Cooper E, Ferrara M, Broglio S. Exertional heat illness and environmental conditions during a single football season in the Southeast. *J Athl Train*. 2006;41:332-336.

Table 5. August Exertional Heat Injuries

Date	Cramps	Exhaustion	Syncope	Total Exertional Heat Illnesses	Exposures	Incidence Rate/ 1000 Athlete- Exposures
					•	
Week 1	37	7	5	49	3205	15.29
Week 2	27	8	0	35	4514	7.75
Week 3	18	11	3	32	3634	8.81
Week 4	4	2	0	6	2272	2.64
Total	86	28	8	122	13 625	8.95
Incidence rate/1000						
athlete-exposures	6.31	2.06	0.58			
Percentage	70	23	7	100		

Strongest

2

3

4

5

Weakest

PEDro

Score

Reasons for EHS: Environmental Conditions

Grundstein AJ, Cooper E, Ferrara M, Knox JA. The geography of extreme heat hazards for American football players. *Appl Geogr.* 2014; 46: 53-60.

80% of deaths occurred in locations with WBGT >26° C (79° F)

Overall...

EBM Tier

Overall...

Armstrong LE, Johnson EC, Casa DJ, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. *J Athl Train*. 2010;45:117-127.

Table 4. Rate of Rectal Temperature Increase During Treadmill Exercise (Mean \pm SD), N = 10

Experimental Condition	Rate of Rectal Temperature Rise, °C/mir
Control clothing	0.037 ± 0.015
Partial uniform	0.052 ± 0.012
Full uniform	0.071 ± 0.032^{a}

^a Indicates greater than control clothing and partial uniform conditions (P < .001).

T_{rec} increases ~0.25° C/min faster when full football uniforms are worn EBM Tier

Score

6/10

Overall...

Kulka T, Kenney W. Heat balance limits in football uniforms: how different uniform ensembles alter the equation. *Physician Sportsmed*. 2002;30:29-39.

EBM Tier

Strongest

Question #3: Which, When, and Where are American football Players at the highest risk of EHS?

Where are American Football Players Dying?

Grundstein AJ, Ramseyer C, Zhao F, et al. A retrospective analysis of American football hyperthermia deaths in the United States. *Int J Biometeorol.* 2012; 56: 11-20.

EBM Tier

Strongest

2

3

4

5

Weakest

PEDro

Score

N/A

Question #4: Do American football uniforms or anthropometrics impact EHS treatment?

Football Equipment's Effect on Body Core Temperature Cooling

We Did 3 Different Studies on PADS Effect on Cooling

- 1. Miller KC, Swartz EE, Long BC. Cold-water immersion for hyperthermic humans wearing football uniforms. *J Athl Train.* 2015;50:792-799.
- 2. Miller KC, Long BC, Edwards JE. Necessity of removing American football uniforms from hyperthermic humans before cold-water immersion. *J Athl Train.* 2015;50:1240-1246.
- 3. Miller KC, Truxton TT, Long BC. Temperate water immersion as a treatment for hyperthermic humans wearing American football uniforms. *J Athl Train*. 2016: In press.

PEDro Score

5/10

General Methods for the 3 Studies

Exercise in PADS in the heat until $T_{rec} = 39.5^{\circ}$ C

Wear PADS or shorts during CWI or TWI (10° -20° C) until $T_{rec} \le 38^{\circ}$ C

Remove PADS

or Not

GLATA, 2017

Results from 3 PADS Studies

Research Study	T _{rec} Cool	ing Rate
	PADS	NO Pads (Control)
• Miller et al, 2015 (Cold-water immersion for)	•0.28 ± 0.12°C/min	•0.23 ± 0.11°C/min
 Miller et al, 2015 (Necessity of removing) 	•0.21 ± 0.11° C/min	•0.28 ± 0.14° C/min
 Miller et al, 2016 (Temperate water immersion) 	•0.12 +	•0.12 +
	0.05° C/min	0.05° C/min

Average Cooling Rate for PADS in Cold Water = **0.22° C/mi n!**

Why is CWI Effective with Equipment On?

- 1. A lot of BSA is still being treated
- 2. PADS do not interfere with water access to the body (i.e., conductive cooling still occurs)
- 3. PADS do not interfere much with convective cooling
- 4. Less shivering with PADS on

So What?

- 1. PADS should be removed <u>before</u> CWI when:
 - -individuals knowledgeable in equipment removal are present,
 - -removal tools (e.g., scissors) are immediately available,
 - -PADS can be easily removed,
 - -PADS interfere with the ability to fully immerse the athlete.
- 2. If CWI has been delayed or the above are not met, immerse the football athlete with PADS on.
- 3. Cool first, transport second.

NATA Position Statement (c. 2015)

Journal of Athletic Training 2015;50(9):986–1000 doi: 10.4085/1062-6050-50.9.07 © by the National Athletic Trainers' Association, Inc www.natijournals.org

National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses

Douglas J. Casa, PhD, ATC, FNATA, FACSM*; Julie K. DeMartini, PhD, ATC+; Michael F. Bergeron, PhD, FACSM±; Dave Csillan, MS, ATC, LATS; E. Randy Eichner, MD, FACSM Rebecca M. Lopez, PhD, ATC, CSCS¶; Michael S. Ferrara, PhD, ATC, FNATA#; Kevin C. Miller, PhD, ATC**; Francis O'Connor, MD, MPH, FACSM++; Michael N. Sawka, PhD, FACSM±±; Susan W. Yeargin, PhD, ATC§§

*University of Connecticut, Storrs; †Sacred Heart University Fairfield, CT; ‡Youth Sports of the Americas, Birmingham, AL §Ewing High School, NJ; ||University of Oklahoma Health Sciences Center, Oklahoma City; ¶University of South Florida, Tampa; #University of New Hampshire, Durham; **Central Michigan University, Mount Pleasant; #Uniformed Services University, Bethesda, MD; ##Georgia Institute of Technology, Atlanta; &University of South Carolina, Columbia

Objective: To present best-practice recommendations for proper recognition and treatment can be accomplished in order to maximize the safety and performance of athletes. illnesses (EHIs) and to describe the relevant physiology of thermoregulation.

Background: Certified athletic trainers recognize and treat establish onsite emergency action plans for their venues and athletes with EHIs, often in high-risk environments. Although the proper recognition and successful treatment strategies are well the appropriate prevention strategies, proper recognition tactics, documented, EHIs continue to plague athletes, and exertional and effective treatment plans for EHIs. Athletic trainers and heat stroke remains one of the leading causes of sudden death other allied health care professionals must be properly educated during sport. The recommendations presented in this document and prepared to respond in an expedient manner to alleviate provide athletic trainers and allied health providers with an symptoms and minimize the morbidity and mortality associated integrated scientific and clinically applicable approach to the with these illnesses. prevention, recognition, treatment of, and return-to-activity

Recommendations: Athletic trainers and other allied health care professionals should use these recommendations to

Key Words: heat cramps, heat syncope, heat exhaustion, guidelines for EHIs. These recommendations are given so that heat injury, heat stroke, dehydration

he prevention, recognition, and treatment of exer-Association (NATA) and replaces the document that was tional heat illnesses (EHIs) are core components of published in 2002.1

The care of exertional heat-stroke (EHS) patients has sports medicine services at all levels of sport. The risk of EHI is ever present during exercise in the heat but come a long way in the past millennia. We now possess the risk of EH1 is ever present survey and the second state of the sec current knowledge base has allowed us to greatly enhance and treated at the time of collapse.²³ Additionally, our the level of care that can be provided for athletes with these knowledge base and proven management protocols allow medical conditions. This document serves as the current us to establish effective prevention and management position statement for the National Athletic Trainers' strategies to minimize the risk of and improve the outcome

986 Volume 50 • Number 9 • September 2015

37. When EHS is suspected, the patient's body (trunk and extremities) should be quickly immersed in a pool or tub of cold water. Removing excess clothing and equipment will enhance cooling by maximizing the surface area of the skin. However, because removing excess clothing and equipment can be time consuming, CWI should begin immediately and equipment should be removed while the patient is in the tub (or while temperature is being assessed or the tub is being prepared).59 Rectal temperature and other vital signs should be monitored during cooling every 5 to 10 minutes if a continuous monitoring

device is not available.^{20,60} Strength of recommendation:

OROI UNDATION

B

Anthropometrics on Body Core Temperature Cooling

Lemire BB, Gagnon D, Jay O, Dorman L, Ducharme MB, Kenny GP. Influence of adiposity on cooling efficiency in hyperthermic individuals. *Eur J Appl Physiol*. 2008;104:67-74.

Fig. 2 Time to reach 39.5, 38.5 and 37.5°C for esophageal (T_{es} , **a**), aural canal (T_{ac} , **b**) and rectal (T_{re} , **c**) temperatures for the low fat (*open square*) and high fat (*filled triangle*) group. Values are mean \pm SE

Fig. 3 Overall cooling rates for esophageal (T_{es}, a) , aural canal (T_{ac}, b) and rectal (T_{re}, c) temperatures for the low fat (*open square*) and high fat (*filled square*) group. Values are mean \pm SE

PEDro Score

4/10

Friesen BJ, Carter MR, Poirier MP, Kenny GP. Water immersion in the treatment of exertional hyperthermia: Physical determinants. *Med Sci Sports Exerc*. 2014;46:1727-1735.

Question #5: What Happens, Physiologically, to American football Players if They Become Severely Hyperthermic but Treatment is Delayed?

Treatment of EHS

- •The 2 MOST important factors influencing the prognosis of EHS are:
 - 1. Degree of Hyperthermia

2. Length of Time the Individual is Hyperthermic

Case Study: Gavin Class

(Awesome!)

- Water immersion within 5 min of symptoms
- EMS called (Great so far!)
- No T_{rec} taken (uh oh...)
- EMS take Gavin out of the tub after 5 min (double uh oh...)
- 30 min later at hospital. T_{rec} = 108° F (42.2° C)

(this is not going to end well...)

Gavin Class (Towson)

EBM Tier

PEDro Score

N/A

Outcome of the Gavin Class Case

 Emergency liver
 transplant

• Almost dies

Gavin Class files lawsuit, seeks to rejoin Towson football team

August 2013 = EHS August 2015 = suing to play football

EBM Tier

UNIVERSITY

		5-min Wait		, ,	30-min Wait	
	Pre-	Post-	Post-	Pre-	Post-	Post-
	Exercise	Wait	CWI	Exercise	Wait	CWI
Total	2 ± 2^{a}	27 ± 15 b,c	7 ± 6	2 ± 1^{d}	16 ± 12 ^e	5 ± 4
alyzed. " = 5-min pre 30-min pre-exercise	e-exercise < 5-min post-v < 30-min post-wait; ^e = 3	vait; ^o = 5-min po 0-min post-wait	Feel bette waitbut	r after a 30- their T _{rec} we	post-wait > 30- d numerals indi minute re still ne	ar

So What?

- 1.If CWI has been delayed, immerse the football athlete with PADS on.
- 2.Don't rely on patient perceptions of how hot they feel or the number of symptoms they present especially if there's been a delay in treatment! Use T_{rec} to diagnose EHS!

Question #6: Can Cooling Vests Be Used to Treat EHS in American Football Players?

Mazerolle S, Scruggs I, Casa D, et al. Current knowledge, attitudes, and practices of certified Athletic Trainers regarding recognition and treatment of exertional heat stroke. *J Athl Train*. 2010;2:170-180.

UNIVERSITY

So We Did a CAT

PIO Question = Are T_{Core} cooling rates acceptable (i.e., >0.08° C·min⁻¹) when hyperthermic humans are treated with cooling vests post-exercise?

EBM Tier

Strongest

2

3

4

5

CAT Articles

Keen ML, Miller KC. Should cooling vests be used to treat exertional heatstroke?: A critically-appraised topic. *J Sport Rehabil*. 2015; In press.

Author	Study Design	Level of evidence	PEDro Score
Brade et al. ²	Randomized Controlled Trial	2	6 of 10
DeMartini et al. ⁴	Randomized Controlled Trial	2	5 of 10
Holster et al. ³	Randomized Controlled Trial	2	6 of 10
Lopez et al. ¹	Randomized Controlled Trial	2	6 of 10

Table 1. Summary of study designs of articles retrieved

Keen ML, Miller KC. Should cooling vests be used to treat exertional heatstroke?: A critically-appraised topic. *J Sport Rehabil*. 2015; In press.

Authors	Patients, n	Experimental Design &	Cooling	Results	Conclusions
		Methods	Intervention		
Brade et al. ²	12 males (age=21.3±1.1 y, ht=182.7±7.1 cm, mass=76.2±9.5 kg, BSA=1.98±0.14 m ²)	-Cross-over study. -Cycled on a bicycle ergometer at 75% VO ₂ max in heat for 30 min (35°C±1.4°C, 52%±4% humidity). -Wore one of two vests or no vest for 30 min in a comfortable room (24.9±1.8°C, 39±10%)	(1) dry PC17 vest with 4 anterior and posterior pockets; (2) a gel vest (4 anterior and posterior pockets); or (3) no vest	$\begin{array}{l} PC17 \ vest \ T_C \ pre-cooling \\ = \ 38.44 \pm 0.42 ^\circ C \\ Gel \ vest \ T_C \ pre-cooling = \\ 38.49 \pm 0.43 ^\circ C \\ No \ vest \ T_C \ pre-cooling = \\ 38.5 \pm 0.4 ^\circ C \\ \end{array}$	-No significant differences between both cooling vests and no vest. -Both cooling vests did not meet the acceptable cooling rate for EHS victims (i.e., >0.08 C/min)
DeMartini et al. ⁴	9 males and 7 females (age=24 \pm 6 y, ht=182 \pm 7 cm, mass=74.03 \pm 9.17 kg BSA ^a = ~1.9 m ²)	 -Cross-over study. -Played soccer, ultimate frisbee and bree-ball outside (26.64±4.71°C) for 45-60 min. - Wore one of two vests or no vest for 10 min with or without shade. 	(1) Game Ready Active vest with 14°C circulating water with shade; (2) Nike Ice Vest [™] with 22 pouches with shade; or (3) no vest without shade.	$T_{C} \text{ pre-cooling} = 38.73\pm0.12^{\circ}\text{C}$ (average all trials) Game Ready Active vest cooling rate = 0.043\pm0.025^{\circ}\text{C/min} Nike Ice Vest TM cooling rate = 0.053\pm0.022^{\circ}\text{C/min} No vest cooling rate = 0.042\pm0.015^{\circ}\text{C/min}	-No significant differences between both cooling vests and no vest. -Both cooling vests did not meet the acceptable cooling rate for EHS victims (i.e., >0.08°C/min)

Table 2. Characteristics of included studies

Keen ML, Miller KC. Should cooling vests be used to treat exertional heatstroke?: A critically-appraised topic. J Sport Rehabil. 2015; In press.

Table 2. Char	<u>acteristics of include</u>	d studies, continued.				
Authors	Patients, n	Experimental Design &	Cooling	Results	Conclusions	
		Methods	Intervention			
Holster et al. ³	14 males	-Cross-over study.	(1) water-perfused	T _C pre-cooling	-No significant	
	(age=31.1±7.6 y,	-Exercised on a	cooling vest; or (2)	$= 38.25 \pm 1.0^{\circ}$ C	differences between	
	ht=176.2±5.5 cm,	treadmill for 50 min	no vest.	(average both trials)	cooling vest and no	
	mass=80.2±12.2 kg,	in the heat		_	vest.	
	$BSA^{a} = \sim 2.0 \text{ m}^{2}$)	(35.1±2.7°C).		Vest cooling rate	-Cooling vest did not	Average
	and 4 females	-Wore vest or no vest		$= 0.041 \pm 0.022$ °C/min	meet the acceptable	Average
	(age=25.5±5.2 y,	for 20 min in a		No vest cooling rate	cooling rate for EHS	0
	ht=157.7±2.9 cm,	$t=157.7\pm2.9$ cm, comfortable room mass=58.5\pm6.7 kg, (24.0°C±1.4°C)		= 0.047±0.031°C/mir	$= 0.047 \pm 0.031$ °C/min victims (i.e.,	Cooling rate
	mass=58.5±6.7 kg,				>0.08°C/min)	
	$BSA^{a} = ~1.6 \text{ m}^{2}$				_	0
						for all vocto
Lopez et al. ¹	10 males	-Cross-over study.	(1) INDURA Heat	T_C pre-cooling =	-No significant	IUI all vests
	(age=25.6±1.6 y,	-Ran on a treadmill for	Shield Vest (vest temp =	38.8±0.3°C	differences between	
	mass=80.3±13.7 kg)	$ass=80.3\pm13.7 \text{ kg})^{b}$ 67.0±10.6 min in the	21.1°C); or (2) no vest	(average both trials)	INDURA Heat Shield	in $CAT -$
		heat (33.3±3.1°C;			Vest and no vest.	$\Pi CAI =$
		humidity=55.1±8.9%)		INDURA Heat Shield	-Cooling vest did not	•
		-Wore vest or no vest		Vest cooling rate =	meet the acceptable	0.01° C/mi
		for 30 min in a		0.03±0.007°C/min	cooling rate for EHS	0.04 C/111
		comfortable room		No vest cooling rate =	victims (i.e.,	-
		(26.6±2.2°C;		0.028±0.0074°C/min	>0.08°C/min)	n
		55.4±5.8% humidity).			-	11

ht = height, BSA = body surface area, T_C = core body temperature, VO₂max = maximum volume of oxygen consumed (ml/kg/min), PC17 = phase-change material cooling vest, EHS = exertional heatstroke. ^a = We calculated BSA with the original author's descriptive information using the following equation: weight^{0.425} height^{0.725} 0.007184. ^b = Height was not provided in article so BSA could not be calculated.

McDermott B, Casa D, Ganio M, et al. Acute whole-body cooling for exercise-induced hyperthermia: A systematic review. *J Athl Train.* 2009;44:84-93.

Unacceptable cooling rates for EHS victims.

Cooling vests have similar cooling rates as:

- 1. Dousing with water while fanning
 - (0.035°C/min)
- 1. Ice packs covering the body (0.034° C/min)
- Ice packs at major arteries and dousing with fanning (0.036° C/min)
- 3. Fanning and compressed air (0.04° C/min)
- 4. Chilled IVs (0.05-
 - 0.1°C/min)

EBM Tier

PEDro Score

n/a

Why are Cooling Vests Ineffective?

- 1. Don't cover a lot of BSA
- 2. Require frequent changing of ice packs/water to optimize cooling
- 3. Rely <u>only</u> on conduction for cooling
- 4. Material between vest and skin
- 5. Need to remove PADS

What Does This Mean for EHS Victims?

- If T_{core} was 42° C and cooling vests were used, it would take <u>100 minutes</u> to reduce T_{core} to a safe level (i.e., 38° C)
- Goal is to reduce T_{core} within 30 minutes of collapse

So What Can You Do Right Now?

2 Practical Steps

 Ensure you have the necessary equipment ready and available (rectal thermometer, water tub)

\$950 for thermometer;\$72 for reusable probes

http://www.advindsys.com/Products/4600Pre cisionThermistor.htm

2. Make EAP Region Specific for EHS

\$150-300

\$275 for thermometer; \$12 for disposable probes

http://rgmd.com/datatherm2.html

Current Georgia HS WBGT Guidelines

WBGT = 0.7*WB + 0.2*GT + 0.1*DB

WBGT	WBGT READING	ACTIVITY GUIDELINES & REST BREAK GUIDELINES	
(°C) < 27.7	Under 82.0	Normal activities Provide at least three separate rest breaks each hour of	One-size
		minimum duration of 3 minutes each during workout	
	82.0 - 86.9	Use discretion for intense or prolonged exercise; watch at-risk players	
27.7 – 30.5		carefully; Provide at least three separate rest breaks each hour of a minimum	
		of four minutes duration each	
	87.0 - 89.9	Maximum practice time is two hours. For Football: players restricted to	Southern
		helmet, shoulder pads, and shorts during practice. All protective equipment	
30.5 - 32.2		must be removed for conditioning activities. For all sports: Provide at least	states
		four separate rest breaks each hour of a minimum of four minutes each	would
	90.0 - 92.0	Maximum length of practice is one hour, no protective equipment may be	would
32.2 - 33.3		worn during practice and there may be no conditioning activities. There	never
		must be 20-minutes of rest breaks provided during the hour of practice	
<u>_333</u>	Over 92.1	No outdoor workouts; Cancel exercise; delay practices until a cooler	blav
/ ////		WBGT reading occurs	
	l		toothall!

Current ACSM Guidelines

Armstrong LE, Casa DJ, Millard-Stafford ML, Moran D, Pyne S, Roberts WO. American College of Sports Medicine position stand: Exertional heat illness during training and competition. *Med Sci Sports Exerc*. 2007;39:556-572.

WBGT ^b			Training and Noncontinuous Activity	
°F	°C	Continuous Activity and Competition	Nonacclimatized, Unfit, High-Risk Individuals ^c	Acclimatized, Fit, Low-Risk Individuals ^{e,d}
≤50.0	≤10.0	Generally safe; EHS can occur associated with individual factors	Normal activity	Normal activity
50.165.0	10.118.3	Generally safe; EHS can occur	Normal activity	Normal activity
65.1–72.0	18.4–22.2	Risk of EHS and other heat illness begins to rise; high-risk individuals should be monitored or not compete	Increase the rest:work ratio. Monitor fluid intake.	Normal activity
72.1–78.0	22.3-25.6	Risk for all competitors is increased	Increase the rest:work ratio and decrease total duration of activity.	Normal activity. Monitor fluid intake.
78.1–82.0	25.7–27.8	Risk for unfit, nonacclimatized	Increase the rest:work ratio; decrease intensity and total duration of activity.	Normal activity. Monitor fluid intake.
82.1-86.0	27. 9– 30.0	Cancel level for EHS risk	Increase the rest:work ratio to 1:1, decrease intensity and total duration of activity. Limit intense exercise. Watch at-risk individuals carefully	Plan intense or prolonged exercise with discretion ^f ; watch at-risk Individuals carefully
86.1–90.0	30.1–32.2		Cancel or stop practice and competition.	Limit intense exercise ^f and total daily exposure to heat and humidity; watch for early signs and symptoms
≥90.1	>32.3		Cancel exercise.	Cancel exercise uncompensable heat stress ^e exists for all athletes ¹

TABLE 2. WBGT levels for modification or cancellation of workouts or athletic competition for healthy adults.^{a,f}

Why Regional vs. National WBGT Guidelines?

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Fig. 1. 90th percentile warm season maximum daily wet-bulb globe temperatures (°C).

"Revised" ACSM WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 1 (°C)	Current ACSM Standards (°C)	Activity Guideline
≤6.7	≤10.0	Normal Activity
6.8 - 15.0	10.1 - 18.3	Normal Activity
15.1 – 18.9	18.4 – 22.2	Normal Activity
19.0 – 22.3	22.3 – 25.6	Normal Activity. Monitor fluid intake
22.4 – 24.5	25.7 – 27.8	Normal Activity. Monitor fluid intake
24.6 – 26.7	27.9 – 30.0	Plan intense or prolonged exercise with discretion; watch at risk individuals closely.
26.8 – 28.9	30.1 – 32.2	Limit Intense exercise and total daily exposure to heat & humidity
≥29	≥32.3	Cancel exercise

"Revised" ACSM WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 2 (°C)	Current ACSM Standards (°C)	Activity Guideline
≤8.7	≤10.0	Normal Activity
8.8 - 17.0	10.1 - 18.3	Normal Activity
17.1 – 20.9	18.4 – 22.2	Normal Activity
21.0 – 24.3	22.3 – 25.6	Normal Activity. Monitor fluid intake
24.4 – 26.5	25.7 – 27.8	Normal Activity. Monitor fluid intake
26.6 – 28.7	27.9 – 30.0	Plan intense or prolonged exercise with discretion; watch at risk individuals closely.
28.8 – 30.9	30.1 – 32.2	Limit Intense exercise and total daily exposure to heat & humidity
≥31	≥32.3	Cancel exercise

"Revised" ACSM WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 3 (°C)	Current ACSM Standards (°C)	Activity Guideline
≤10.0	≤10.0	Normal Activity
10.1 - 18.3	10.1 – 18.3	Normal Activity
18.4 – 22.2	18.4 – 22.2	Normal Activity
22.3 – 25.6	22.3 – 25.6	Normal Activity. Monitor fluid intake
25.7 – 27.8	25.7 – 27.8	Normal Activity. Monitor fluid intake
27.9 – 30.0	27.9 – 30.0	Plan intense or prolonged exercise with discretion; watch at risk individuals closely.
30.1 – 32.2	30.1 – 32.2	Limit Intense exercise and total daily exposure to heat & humidity
≥32.3	≥32.3	Cancel exercise

GLATA, 2017

"Revised" Georgia HS WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 1 (°C)	Current Georgia Standard (°C)	Activity Guideline
≤24.5	≤27.7	Normal Activity. Provide at least 3 separate rest breaks each hour of a minimum duration of 3 min.
24.6 – 27.2	27.8 – 30.5	Use discretion for intense or prolonged exercise; watch at-risk players carefully. Provide at least 3 separate rest breaks each hour of a minimum duration of 4 min.
27.3 – 28.9	30.6 – 32.2	Maximum practice time is 2 hours. For Football : players restricted to helmet, shoulder pads, and shorts during practice. All protective equipment must be removed for conditioning. All Sports : Provide at least 4 separate rest breaks each hour of a minimum of 4 min each.
29.0 – 30.0	32.3 – 33.3	Maximum length of practice is 1 hour, no protective equipment may be won during practice and there may be no conditioning activities. There must be 20-minutes of rest breaks provided during the 1 of practice.
≥30.1	≥33.4	No outdoor workouts; Cancel exercise; delay practices until a cooler WBGT reading occurs.

Category 1 Category 2 Category 3

"Revised" Georgia HS WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 2 (°C)	Current Georgia Standard (°C)	Activity Guideline
≤26.5	≤27.7	Normal Activity. Provide at least 3 separate rest breaks each hour of a minimum duration of 3 min.
26.6 – 29.2	27.8 – 30.5	Use discretion for intense or prolonged exercise; watch at-risk players carefully. Provide at least 3 separate rest breaks each hour of a minimum duration of 4 min.
29.3 – 30.9	30.6 – 32.2	Maximum practice time is 2 hours. For Football : players restricted to helmet, shoulder pads, and shorts during practice. All protective equipment must be removed for conditioning. All Sports : Provide at least 4 separate rest breaks each hour of a minimum of 4 min each.
31.0 – 32.0	32.3 – 33.3	Maximum length of practice is 1 hour, no protective equipment may be won during practice and there may be no conditioning activities. There must be 20-minutes of rest breaks provided during the 1 of practice.
≥32.1	≥33.4	No outdoor workouts; Cancel exercise; delay practices until a cooler WBGT reading occurs.

Category 1 Category 2 Category 3

"Revised" Georgia HS WBGT Standards using Regional System

Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the continuous United States. *Appl Geogr.* 2015;56:55-60.

Cat 3 (°C)	Current Georgia Standard (°C)	Activity Guideline	
≤27.7	≤27.7	Normal Activity. Provide at least 3 separate rest breaks each hour of a minimum duration of 3 min.	
27.8 – 30.5	27.8 – 30.5	Use discretion for intense or prolonged exercise; watch at-risk players carefully. Provide at least 3 separate rest breaks each hour of a minimum duration of 4 min.	ARE
30.6 – 32.2	30.6 – 32.2	Maximum practice time is 2 hours. For Football : players restricted to helmet, shoulder pads, and shorts during practice. All protective equipment must be removed for conditioning. All Sports : Provide at least 4 separate rest breaks each hour of a minimum of 4 min each.	
32.3 - 33.3	32.3 - 33.3	Maximum length of practice is 1 hour, no protective equipment may be won during practice and there may be no conditioning activities. There must be 20-minutes of rest breaks provided during the 1 of practice.	
≥33.4	≥33.4	No outdoor workouts; Cancel exercise; delay practices until a cooler WBGT reading occurs.	

Category 1 Category 2

Your Questions or Comments?

mille5k@cmich.edu

989-774-2813

