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In the third post in this series (part 1, part 2) on proof re�nement, I’m going to show you how to properly handle bidirectionality in an elegant way.

The technique we’ll use is the replacement of lists and functions with a data structure called a telescope. This post will use Haskell exclusively,

because of the limitations of JavaScript in presenting these things elegantly.

I’ve put together repl.it REPLs for this blog post so you can play around with the code. You can �nd them here: Addition 1, Addition 2, Addition 3,

Lambda Calculus.

Consider the type that represented a successful decomposition of a problem judgment into subproblems, when working in the proof system for

addition: ([Judgment], [Nat] -> Nat). The list of judgments represents the subproblems, and the function represents how to compute the

result of the main problem from the results of the subproblems. This was problematic to generalize though, because it meant that all of the

subproblems had to be independent. You couldn’t use the result of solving an earlier subproblem to state what a later problem was. Information

�owed strictly from subproblems out to main problems, never into other subproblems.

This of course was because the subproblems were all given at the same time, and the results were all simultaneous arguments to the function

that computed the main result. For instance, we might have a decomposition that looked like ([j0,j1,j2], f) where f = \[r0,r1,r2] -
> ..., and we would solve these basically as f [solve j0, solve j1, solve j2]. What could we do to make it possible to have

dependence of later problems are earlier results, though? Well, we could produce subproblems and consume results one at a time. In fact, instead

IOHK | IOHK | BLOG



of the above pair, why not have (j0, \r0 -> (j1, \r1 -> (r2, \r2 -> ...))). This has the type (Judgment, Nat ->
(Judgment, Nat -> (Judgment, Nat -> Nat))), which is speci�c to the case where the list of subproblems has exactly three
subproblems in it. This doesn’t generalize well, but we can notice the obvious recursive pattern and instead de�ne

data Problems = Done Nat 
              | SubProblem Judgment (Nat -> Problems) 

Here, we’re either done, and we have a resulting number, or we have a subproblem to solve, and a way of getting from the result of solving it to
some more problems. Now of course, decomposing actually produced a Maybe ([Judgment], [Nat] -> Nat), so we really ought to de�ne
this type to account for the Nothing case as well:

data Problems = Fail 
              | Done Nat 
              | SubProblem Judgment (Nat -> Problems) 

Our decompositions now will look mostly the same, but slightly different:

decomposePlus12 :: Nat -> Nat -> Problems 
decomposePlus12 Zero    y = Done y 
decomposePlus12 (Suc x) y = SubProblem (Plus12 x y) (\z -> Done (Suc z)) 

decomposePlus13 :: Nat -> Nat -> Problems 
decomposePlus13 Zero z = Done z 
decomposePlus13 (Suc x) (Suc z) = SubProblem (Plus13 x z) (\z -> Done z) 
decomposePlus13 _ _ = Fail 

decompose :: Judgment -> Problems 
decompose (Plus12 x y) = decomposePlus12 x y 
decompose (Plus13 x z) = decomposePlus13 x z 

Finding a proof is pretty easy now too, because we can just de�ne it in in terms of a second function that handles problems more generally.
Dropping the reconstruction of a proof tree, we have:

findProof :: Judgment -> Maybe Nat 
findProof j = solveProblems (decompose j) 

solveProblems :: Problems -> Maybe Nat 
solveProblems Fail = Nothing 
solveProblems (Done x) = return x 
solveProblems (SubProblem j f) = 
  do x <- findProof j 
     solveProblems (f x) 

The interesting thing here is how we solve problems. If we fail, well, we’ve failed, so there’s nothing to return. If we’ve �nished, we’ve �nished and
so there’s a number to return. But what if we have a subproblem? Well, we simply �nd a proof for it, computing the result as x, and then use the
result of that to get more problems to solve, and solve those.

Generalizing

Having established the general shape of this approach, we can now move on to generalizing the pattern involved. The �rst move we’ll make is to
observe that we might want to generalize the type of judgments to index for the type of their result. After all, we might also want to include
predicates in the class of possible judgments, where there are no useful return values at all, just (). So we can generalize Judgment, and in term,
Problems, like so:

data Judgment r where 
  Plus12 :: Nat -> Nat -> Judgment Nat 
  Plus13 :: Nat -> Nat -> Judgment Nat 

data Problems r where 
  Fail :: Problems r 
  Done :: r -> Problems r 
  SubProblem :: Judgment s -> (s -> Problems r) -> Problems r 



As soon as we do this, we discover that Problems looks an awful lot like a monad, and indeed, it is!

instance Functor Problems where 
  fmap f Fail = Fail 
  fmap f (Done x) = Done (f x) 
  fmap f (SubProblem p g) = SubProblem p (fmap f . g) 

instance Applicative Problems where 
  pure = Done 
  pf <*> px = pf >>= \f -> px >>= \x -> return (f x) 

instance Monad Problems where 
  return = Done 
  Fail >>= g = Fail 
  Done x >>= g = g x 
  SubProblem p f >>= g = SubProblem p (\x -> f x >>= g) 

This monad instance basically just codes up concatenation of problems. With lists of judgments, we can just concatenate them, but what to do

with the functions that construct results? Here instead we say that if we have one sequence of problems that produces some result, and from

that result, we can compute another sequence of problems, well we can just dig around in the �rst sequence and replace its Done node (which

ends the sequence of problems with the result) by the problems we would get. We thus get a single big sequence of problems.

This monadic interfaces also gives us a really elegant way of writing these telescopes:

subProblem :: Judgment r -> Problems r 
subProblem j = SubProblem j (\x -> Done x) 

decomposePlus12 :: Nat -> Nat -> Problems Nat 
decomposePlus12 Zero    y = return y 
decomposePlus12 (Suc x) y = 
  do z <- subProblem (Plus12 x y)  
     return (Suc z) 

decomposePlus13 :: Nat -> Nat -> Problems Nat 
decomposePlus13 Zero z = return z 
decomposePlus13 (Suc x) (Suc z) = 
  subProblem (Plus13 x z) 
decomposePlus13 _ _ = Fail 

Let’s add in a full ternary predicate version of our Plus to see how this works with other kinds of returned values:

data Judgment r where 
  Plus12 :: Nat -> Nat -> Judgment Nat 
  Plus13 :: Nat -> Nat -> Judgment Nat 
  Plus123 :: Nat -> Nat -> Nat -> Judgment () 

decomposePlus123 :: Nat -> Nat -> Nat -> Problems () 
decomposePlus123 Zero y z = 
  if y == z 
     then return () 
     else Fail 
decomposePlus123 (Suc x) y (Suc z) = 
  subProblem (Plus123 x y z) 

Readers who are especially familiar with functional programming idioms will observe that this is a variety of free monad construct, namely, the

call-response tree variety.

And now, what parts of this really depend on the problem domain of addition? Well, clearly Judgment, because that de�nes what the problems are

in the �rst place. And of course, as a result of that, the various decomposition functions. But not much else, provided we have some means of

abstracting over those. Namely: the Problems type can be generalized away from Judgment, and �ndProof can be generalized away from the

implementation of decompose, by way of a type class.

data Problems (j :: * -> *) (r :: *) where 
  Fail :: Problems j r 
  Done :: r -> Problems j r 
  SubProblem :: j s -> (s -> Problems j r) -> Problems j r 



subProblem :: j r -> Problems j r 
subProblem j = SubProblem j (\x -> Done x) 

class Decomposable j where 
  decompose :: j r -> Problems j r 

findProof :: Decomposable j => j r -> Maybe r 
findProof j = solveProblems (decompose j) 

solveProblems :: Decomposable j => Problems j r -> Maybe r 
solveProblems Fail = Nothing 
solveProblems (Done x) = Just x 
solveProblems (SubProblem j f) = 
  do x <- findProof j 
     solveProblems (f x) 

Having abstracted this far, we now can extract this into a little library and use this for bidirectional proof systems in general. Let’s now tackle the
simply typed lambda calculus.

Simply Typed LC

Because we’ve extracted out the proof re�nement toolkit, we need to only give de�nitions for the judgments and decomposition of our lambda
calculus. This is a great simpli�cation from the setting before. We can now express that type checking is a judgment that produces no interesting
information, but that type synthesis will give us some type information:

data Judgment r where 
  Check :: [(String,Type)] -> Program -> Type -> Judgment () 
  Synth :: [(String,Type)] -> Program -> Judgment Type 

Our decompositions are now more interesting as well, and hopefully a bit more insightful:

decomposeCheck :: [(String,Type)] -> Program -> Type -> Problems Judgment () 
decomposeCheck g (Pair m n) (Prod a b) = 
  do subProblem (Check g m a) 
     subProblem (Check g n b) 
decomposeCheck g (Lam x m) (Arr a b) = 
  subProblem (Check ((x,a):g) m b) 
decomposeCheck g m a = 
  do a2 <- subProblem (Synth g m) 
     if a == a2 
        then return () 
        else Fail 

decomposeSynth :: [(String,Type)] -> Program -> Problems Judgment Type 
decomposeSynth g (Var x) = 
  case lookup x g of 
    Nothing -> Fail 
    Just a -> return a 
decomposeSynth g (Ann m a) = 
  do subProblem (Check g m a) 
     return a 
decomposeSynth g (Fst p) = 
  do t <- subProblem (Synth g p) 
     case t of 
       Prod a b -> return a 
       _ -> Fail 
decomposeSynth g (Snd p) = 
  do t <- subProblem (Synth g p) 
     case t of 
       Prod a b -> return b 
       _ -> Fail 
decomposeSynth g (App f x) = 
  do t <- subProblem (Synth g f) 
     case t of 
       Arr a b -> 
         do subProblem (Check g x a) 
            return b 
       _ -> Fail 
decomposeSynth g m = Fail 

instance Decomposable Judgment where 
  decompose (Check g m a) = decomposeCheck g m a 
  decompose (Synth g m) = decomposeSynth g m 



And we’re done! That is the full de�nition of the type checker for the simply typed lambda calculus with pairs and functions! It has the bene�t of

being fairly straightforward to read.

Conclusion

This wraps up the series of blog posts on proof re�nement. One limitation to this approach is that errors are uninformative, but we can actually

modify this toolkit to provide not just informative errors (Either instead of Maybe), but highly informative context-aware errors that know what

subproblems are being worked on. Another limitation is that the above toolkit only works for when there is at most one result from the bottom-up

direction. That is to say, either a judgment has no proofs, and so there’s no bottom-up result, or it has exactly one proof and thus one bottom-up

result. But we might have multiple such results, for instance, we might have instead built a system for addition that has the �rst two arguments of

Plus as the bottom-up results (i.e. solutions for Plus3 c), and we’d like to be able to get out all pairs (x,y) such that x + y = c for �xed c. There

are plenty of those pairs, so we had better be able to get some kind of list-like results. We also might imagine some other kind of system where in

the course of constructing a proof we need to invent something out of thin air, such as a new name for a variable. In that kind of setting we’d like

to have a proof system that could make use of some state for the collection of generated names. I’ll look at both of these limitations in future blog

posts.

If you have comments or questions, get it touch. I’m @psygnis�ve on Twitter, augur on freenode (in #languagengine and #haskell).

This post is the third part of a three part series, the �rst post is Proof Re�nement Basics, and the second post is Bidirectional Proof Re�nement.


