
Cryptocurrencies need a safeguard to
prevent another DAO disaster
High assurance brings mission-critical security to digital funds
! MAY 12, 2017 " 3 MIN READ

TL;DR You want to avoid the next DAO-like disaster: so you want conCdence that the system underpinning
your cryptocurrency doesn’t have a hidden Faw that could be triggered at any time and render your assets
worthless. To get that conCdence you need a high assurance implementation of the system operating your
cryptocurrency. Formal methods (mathematical speciCcations and proofs) are the best way to build high
assurance software systems, and that is what we are aiming to do with the software behind the
cryptocurrencies we build.

How can you sleep at night?

A gold bar or a wodge of cash stashed in a safe has the rather nice property that it doesn’t just evaporate
overnight. Money managed by computer software is not inherently so durable. Software Faws can be

IOHK | IOHK | BLOG

revealed without warning and can destroy the trust in whole systems.

We only have to look around us to see the prevalence of software Faws. The IT trade press is full of news of
data breaches, critical security patches, zero-day exploits etc. At root these are almost all down to software
Faws. Standard software development practices inevitably lead to this state of affairs.

With the DAO in particular, the Faw was in the implementation of the smart contract that deCned the fund, not
directly in Ethereum itself. So the implementation of contracts and the design of smart contract languages is
certainly an important issue, but the next Faw could be somewhere else. It’s hard to know.

So how are we to sleep soundly at night? How can we be conCdent that our cryptocurrency coins are not just
going to evaporate overnight? What we need is assurance. Not to be confused with insurance. Assurance is
evidence and rational arguments that a system correctly does what it is supposed to do.

Systems with high assurance are used in cases where safety or a lot of money is at stake. For example we
rightly demand high assurance that aircraft Fight control systems work correctly so we can all trust in safely
getting from A to B.

If as a community we truly believe that cryptocurrencies are not a toy and can and should be used when there
are billions at stake then it behoves us to aim for high assurance implementations. If we do not have that aim,
are we really serious or credible? And then in the long run we must actually achieve high assurance
implementations.

In this post we’ll focus on the software aspects of systems and how formal methods help with designing high
assurance software. Formal methods can be very useful in aspects of high assurance system design other
than software, but that’ll have to wait for some other blog post.

What does assurance look like?

While we might imagine that assurance is either “yes“ or “no“ – you have it or you don’t – it actually makes
sense to talk about degrees of assurance. See for example the summaries of the assurance levels, EAL1 to
EAL7, in the CC security evaluation standard. The degree of assurance is about risk: how much risk of system
failure are you prepared to tolerate? Higher assurance means a lower risk of failures. Of course all else being
equal you would want higher assurance, but there is inevitably a trade-off. Achieving higher levels of
assurance requires different approaches to system development, more specialised skills and extra up-front
work. So the trade-off is that higher assurance is perceived to come with greater cost, longer development
time and fewer features in a system. This is why almost all normal commercial software development is not
high assurance.

There are two basic approaches to higher assurance software: the traditional approach focused on process
and the modern approach focused on evidence, especially formal mathematical evidence.

Historically, going back to the 1980s and before, the best we could do was essentially to think hard and to be
very careful. So the assurance standards were all about rigorously documenting everything, especially the
process by which the software was designed, built and tested. The evidence at the end is in the form of a big
stack of documents that essentially say “we’ve been very methodical and careful”.

Another approach comes from academic computer science – starting in the 80’s and becoming more
practical and mature ever since. It starts from the premise that computer programs are – in principle –
mathematical objects and can be reasoned about mathematically. When we say “reason about” we mean
mathematical proofs of properties like “this program satisCes this speciCcation”, or “this program always
computes the same result as that program”. The approach is that as part of the development process we
produce mathematical evidence of the correctness of the software. The evidence is (typically) in the form of a
mathematical speciCcation along with proofs about some useful properties of the speciCcation (eg security
properties); and proofs that the Cnal code (or critical parts thereof) satisfy the speciCcation. If this sounds like
magic then bear with me for a moment. We will look at a concrete example in the next section.

One advantage of this approach compared to the traditional approach is that it produces evidence about the
Cnal software artefacts that stands by itself and can be checked by anyone. Indeed someone assessing the
evidence does not need to know or care about the development process (which also makes it more
compatible with open-source development). The evidence does not have to rely on document sign-offs saying
essentially “we did careful code review and all our tests pass”. That kind of evidence is great, but it is indirect
evidence and it is not precise or rigorous.

In principle this kind of mathematical approach can give us an extremely high level of assurance. One can use
a piece of software called a proof assistant (such as Coq or Isabelle) which provides a machine-readable
logical language for writing speciCcations and proofs – and it can automatically check that the proofs are
correct. This is not the kind of proof where a human mathematician checking the proof has to Cll in the details
in their head, but the logician’s kind of proof that is ultra pernickety with no room left for human error.

While this is perhaps the pinnacle of high assurance it is important to note that cryptocurrencies are not
going to get there any time soon. It’s mostly down to time and cost, but also due to some annoying gaps
between the languages of formal proof tools and the programming languages we use to implement systems.

But realistically, we can expect to get much better evidence and assurance than we have today. Another
beneCt of taking an approach based on mathematical speciCcation is that we very often end up with better
designs: simpler, easier to test, easier to reason about later.

Programming from speci?cations

In practice we do not Crst write a speciCcation then write a program to implement the spec and then try to
prove that the program satisCes the speciCcation. There is typically too big a gap between the speciCcation
and implementation to make that tractable. But it also turns out that having a formal speciCcation is a really
useful aid during the process of designing and implementing the program.

The idea is that we start with a speciCcation and iteratively reCne it until it is more or less equivalent to an
implementation that we would be happy with. Each reCnement step produces another speciCcation that is –
in a particular formal sense – equivalent to the previous speciCcation, but more detailed. This approach gives
us an implementation that is correct by construction, since we transform the speciCcation into an
implementation, and provided that each reCnement step is correct then we have a very straightforward
argument that the implementation is correct. These reCnement steps are not just mechanical. They often
involve creativity. It is where we get to make design decisions.

To get a sense of what all this means, let’s look at the example of Ouroboros. Ouroboros is a blockchain
consensus protocol. Its key innovation is that it does not rely on Proof of Work, instead relying on Proof of
Stake. It has been developed by a team of academic cryptography researchers. They have an academic paper,

Ouroboros describing the protocol and mathematical proofs of security properties similar to that which
Bitcoin achieves. It has been developed by a team of academic cryptography researchers, led by IOHK Chief
Scientist Aggelos Kiayias. This is a very high level mathematical description aimed for peer review by other
academic cryptographers.

This is a great starting point. It is a relatively precise mathematical description of the protocol and we can rely
on the proofs of the security properties. So in principle, if we could prove an implementation is equivalent (in
the appropriate way) to the description in the paper, then the security proofs would apply to our
implementation, which is a great place to be.

So how do we go from this speciCcation to an implementation following the “correct by construction”
approach? First we have to make the protocol speciCcation from the paper more precise. It may seem
surprising that we have to make a speciCcation more precise than the one the cryptographers wrote, but this
because it was written for other human cryptographers and not for machines. For the reCnement process we
need to be more like the pernickety logicians. So we have to take the protocol speciCcation written in terms of
English and mathematical symbols and redeCne it in some suitable logical formalism that doesn’t leave any
room for ambiguity.

We then have to embark on the process of reCnement. The initial speciCcation is the most abstract and least
detailed. It says what must be done but has very little detail about how. If I have a more detailed speciCcation
that is a reCnement of the initial speciCcation then what that means intuitively is: if you are happy with the
initial speciCcation then you would be happy with the new speciCcation. You can have different reCnements of
the same speciCcation: they differ in details that are not covered in the original speciCcation. ReCnement also
has a quite speciCc formal meaning, though it depends on exactly what formalism you’re using. In process
calculi, reCnement is described in terms of possible observed behaviours. One speciCcation is a reCnement of
the other if the set of possible observed behaviours are equivalent to the other. Formally the kind of
equivalence we need is what is known as a bisimulation.

In the case of Ouroboros we start with a very abstract speciCcation. In particular it says very little about how
the network protocol works: it describes things in terms of a reliable network broadcast operation. Of course
real networks work in terms of unreliable unicast operations. There are many ways to implement broadcast.
The initial speciCcation doesn’t say. And it rightly doesn’t care. Any suitable choice will do. This is an example
where we get to make a design choice.

The original speciCcation also describes the protocol in terms of broadcasting entire blockchains. That is the
whole chain back to the genesis block. This is not intended to be realistic. It is described this way because it
makes the proofs in the paper easier. Obviously a real implementation needs to work in terms of sending
blocks. So this is another case for reCnement. We have to come up with a scheme where protocol
participants broadcast and receive blocks and show how this is equivalent to the version that broadcasts
chains. This is an interesting example because we are changing the observed behaviour of protocol
participants: in one version we observe them broadcasting chains and in the other broadcasting blocks. The
two do not match up in a trivial way but we should still be able to prove a bisimulation.

There are numerous other examples like this: cases where the speciCcation is silent on details or suggests
unrealistic things. These all need to be reCned to get closer to something we can realistically implement.
When do we move from speciCcation to implementation? That line is very fuzzy. It is a continuum, which
comes back to the point that both speciCcations and programs are mathematical objects. With Ouroboros
the form of speciCcation is such that at each reCnement step we can directly implement the speciCcation – at
least as a simulation. In a simulation it’s perfectly OK to broadcast whole chains or to omit details of the
broadcast algorithm since we can simulate reliable broadcast directly. Being able to run simulations lets us
combine the reCnement based approach with a test or prototype based approach. We can check we’re going

in the right direction, or establish some kinds of simulated behaviour and evaluate different design decisions.

There are also appropriate intermediate points in the reCnement when it makes sense to think about
performance and resource use. We cannot think about resource use with the original high-level Ouroboros
speciCcation. Its description in terms of chain broadcast makes a nonsense of any assessment of resources
use. On the other hand, by the time we have fully working code is too late in the design process. There is a
natural point during the reCnement where we have a speciCcation that is not too detailed but concrete enough
to talk about resource use. At this point we can make some formal arguments about resource use. This is
also an appropriate point to design policies for dealing with overload, fairness and quality of service. This is
critical for avoiding denial of service attacks, and is not something that the high-level speciCcation covers.

Of course any normal careful design process will cover all these issues. The point is simply that these things
can integrate with a formal reCnement approach that builds an argument, step by step, as to why the resulting
design and implementation do actually meet the speciCcation.

Finally it’s worth looking at how much Fexibility this kind of development process gives us with the trade-off
between assurance and time and effort. At the low end we could take this approach and not actually formally
prove anything, but just try to convince ourselves that we could if we needed to. This would mean that the
Cnal assurance argument looks like the following. We have cryptographers check that the protocol description
in their paper is equivalent to our description in our logical formalism. This isn’t a proof, just mathematicians
saying they believe the two descriptions are equivalent. Then we have all the intermediate speciCcations in
the sequence of reCnements. Again, there are no formal proofs of reCnement here, but the steps are relatively
small and anyone could review them along with prose descriptions of why we believe them to be proper
reCnements. Finally we would have an implementation of the most reCned speciCcation, which should match
up in a 1:1 way. Again, computer scientists would need to review these side by side to convince themselves
that they are indeed equivalent.

So this gives us some intermediate level of assurance but the development time isn’t too exorbitant and there
is a relatively clear path to higher assurance. To get higher assurance we would reformulate the original
protocol description using a proof assistant. Then instead of getting a sign-off from mathematicians about
two descriptions being equivalent, we could prove the security properties directly with the new description
using the proof assistant. For each reCnement step the task is clear: prove using the proof assistant that each
one really is a reCnement. The Cnal jump between the most detailed reCned speciCcation and equivalent
executable code is still tricky because we have to step outside the domain of the proof assistant.

With the current state of proof tools and programming language tools we don’t have a great solution for
producing a fully watertight proof that a program described in a proof assistant and in a similar programming
language are really equivalent. There are a number of promising approaches that may become practical in the
next few years, but they’re not quite there yet. So for the moment this would still require some manual
checking. Really high assurance still has some practical constraints: for example we would need a veriCed
compiler and runtime system. This illustrates the point that assurance is only as good as the weakest link and
we should focus our efforts on the links where the risks are greatest.

Direction of travel

As a company, IOHK believes that cryptocurrencies are not a toy, and therefore believes that users are entitled
to expect proper assurance.

As a development team we have the ambition, skills and resources to make an implementation with higher

assurance. We are embarking on the Crst steps of this formal development process now and over time we
will see useful results. Our approach means the Crst tangible results will offer a degree of assurance and we
will be able to improve this over time.

