Engineering students’ problem solving using the digital tool Sim2Bil
Introduction

• Mathematics education for engineering students
• Technology brings in new ways of modelling and visualizing mathematics
• Technology-supported collaborative work
Explorative study

- Digital visualization tool Sim2Bil
- Mathematical tasks
- Investigate students’ problem solving
Theoretical framework

- The analysis will follow a socio-cultural perspective

Lev Vygotsky

Luc Trouche

Anna Sfard
Sim2Bil

Determine other mathematical expressions for v1 and v2, so that the cars run with different velocities, and arrive at the finish line at the same time.
Research Questions

• How can Sim2Bil engage engineering student while working with mathematics?
 • How do engineering students use visualizations to communicate about representations and applications using Sim2Bil?
 • To what extent can Sim2Bil be used for group work in learning environments, in which students work remotely from each other (synchronously and asynchronously)
 •
Methods

• Small-scaled controlled environment (outside normal lectures)

• Participants:
 – Groups of engineering students (1st year)
 – Unfamiliar to Sim2Bil
Tasks

a) Press “Start” in the program, and explain to each other what happens. What do the shaded areas represent?
Task

a) Press “Start” in the program, and explain to each other what happens. What do the shaded areas represent?

b) Determine other numbers in the table, so that the cars run with different velocities, and arrive at the finish line at the same time.
Task

a) Press “Start” in the program, and explain to each other what happens. What do the shaded areas represent?

b) Determine other numbers in the table, so that the cars run with different velocities, and arrive at the finish line at the same time.

c) What can you do to make the green car be only half way when the red car reaches the finish line?
Task

a) Press “Start” in the program, and explain to each other what happens. What do the shaded areas represent?

b) Determine other numbers in the table, so that the cars run with different velocities, and arrive at the finish line at the same time.

c) What can you do to make the green car be only half way when the red car reaches the finish line?

d) Find the velocities of the green and the red car (v1 and v2), so that v2 is half of v1 when they reach the finish line simultaneously at 4 sec. Can you prove that your answer is correct?
Task

a) Press “Start” in the program, and explain to each other what happens. What do the shaded areas represent?

b) Determine other numbers in the table, so that the cars run with different velocities, and arrive at the finish line at the same time.

c) What can you do to make the green car be only half way when the red car reaches the finish line?

d) Find the velocities of the green and the red car (v1 and v2), so that v2 is half of v1 when they reach the finish line simultaneously at 4 sec. Can you prove that your answer is correct?
Video analysis

...we can use t in third and t in first
A few Findings

• 1. Gestured to understand the task
 – Mediated how the cars would run

• 2. Visualized areas on paper
 – Mediated thoughts to peers
A few Findings

• Found 5 velocity functions:

- 1b) \[v_1 = 6,25t^3 \]
 \[v_2 = 18,75t^2 \]

- 1c) \[v_1 = 3,125t^3 \]
 \[v_2 = 18,75t^2 \]

- 1d) \[v_1 = 100 \]
 \[v_2 = -25t + 150 \]
Final remarks

• **Visualizations** are a great support to many learners
• **Visualizations** require certain media

• **Simulations** require “experimental space”

• **Modelling** may give more meaning to the learning and teaching
• How should we introduce modelling practices to students?

• **Technology** brings new ways of teaching and learning mathematics
Thank you!